Chứng minh rằng hai số chẵn liên tiếp có một số là bội của 4
Chứng minh rằng trong hai số chẵn liên tiếp có một số là bội của 4
Gọi 2 số chẵn liên tiếp có dạng 2k và 2k+2 ( k thộc N )
+Nếu k = 2q ( q thuộc N ) thì 2k = 2.2q = 4q chia hết cho 4 hay là bội của 4 (1)
+Nếu k = 2q+1 ( q thuộc N ) thì 2k+2 = 2.(2q+1)+2 = 4q+4 = 4.(q+1) chia hết cho 4 hay là bội của 4 (2)
Từ (1) và (2) => ĐPCM
Chứng minh trong 2 số chẵn liên tiếp có một số là bội của 4
Chứng minh rằng tổng của 3 số chẵn liên tiếp là bội của 6
Gọi 3 số chẵn liên tiếp là \(2k,2k+2,2k+4\left(k\inℕ^∗\right)\)
Ta có: \(2k+2k+2+2k+4=6k+6=6\left(k+1\right)⋮6\)
Gọi 3 STN liên tiếp là n; n+1; n+2 (n thuộc N*)
=> Tích là n(n+1)(n+2)
Vì tích 2 số TN liên tiếp => n(n+1) chia hết cho 2
Vì tích n(n+1)(n+2) là tích 3 STN liên tiếp => chia hết cho 3
Mà n(n+1)(n+3) là ƯCLN(2;3) = { 1 }
Ta có : 2.3=6
Vậy n(n+1)(n+2) chia hết cho 6 <đpcm>
K mk nha
#Mimi
Bội của 6 tức là chia hết cho 6
Chia hết cho 6 thì số đó sẽ chia hết cho cả 2 và 3( vì ƯCLN của 2 và 3 =1)
Bạn cần cm chia hết cho 2 và 3
Mà số đó chẵn => chia hết cho 2
Bn cm chia hết cho 3 nữa là được
mk hướng dẫn thôi, bn tự làm nha
chứng minh rằng trong hai số chẵn liên tiếp có một và chỉ một số chia hết cho 4
Chứng tỏ rằng số có dạng là bội của 101
Chứng tỏ rằng số có dạng aabb là bội của 11
Chứng minh rằng tổng của 3 số chẵn liên tiếp là bội của 6
GHI CHÚ : Ai làm lời giải và phép tính đúng sẽ được like
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
Chứng tỏ rằng
Tổng của 2 số chẵn liên tiếp ko là bội của 4
chứng minh rằng trong hai số chẵn liên tiếp có một và chỉ một số chia hết cho 4
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.