Bài toán :
Cho a, b, c, d thỏa mãn : 4a2 + b2 = 2 và c + d = 4
Tính Min của A = 2ac + bd + cd
Bài toán :
Cho a, b, c, d thỏa mãn : 4a2 + b2 = 2 và c + d = 4
Tính Min của A = 2ac + bd + cd
cho a,b,c,d thỏa mãn:
4a^2 +b^2 =2 và c + d =4
Tính GTNN của A = 2ac + bd + cd
Ta có:
\(c+d=4\)
\(\Rightarrow\left(c+d\right)^2=4^2\)
\(\Rightarrow c^2+2cd+d^2=16\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(4a^2+c^2\ge2.2a.c=4ac\)
\(b^2+d^2\ge2bd\)
\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)
\(\Rightarrow18\ge4ac+2bd+2cd\left(theo\left(1\right)\right)\)
\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)
\(\Rightarrow9\ge2ac+bd+cd\)
\(\Rightarrow2ac+bd+cd\le9\)
\(\Rightarrow A_{max}=9\Leftrightarrow2a=c;b=d\)
Để max đúng
BẠN LÀM SAI RỒI phải tìm rõ cả a,b,c,d
Nếu ko lm sao có dấu bằng xảy ra
vì hệ pt 4a2+b2=2 c=d
c+d=4; 2a=b
vô nghiệm
Tìm GTLN của T= 2ac+bd+cd trong đó a,b,c,d là các số thực thỏa mãn:
4a2+b2=2 và c+d=4
Giúp mình với mọi người ơi.
Cho a,b,c thỏa mãn điều kiện.
4a^2+b^2=2
c+d=4
Tìm giá trị lớn nhất của A = 2ac+bd+cd
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
Lời giải:
$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$
Giúp mình với mọi người ơi.
Cho a,b,c thỏa mãn điều kiện.
\(4a^2+b^2=2\)
\(c+d=4\)
Tìm giá trị lớn nhất của A = 2ac+bd+cd
Ta có: c + d = 4.
<=> (c+d)2 = 16.
<=> c2 + 2cd + d2 = 16.
<=> 4a2 + b2 + c2 + 2cd + d2 = 2 + 16 = 18. (1)
Áp dụng BĐT Cauchy, ta có:
4a2 + c2 ≥ 2*2a*c = 4ac. (2)
b2 + d2 ≥ 2bd. (3)
Từ (1), (2) và (3) suy ra:
18 ≥ 4ac + 2bd + 2cd.
<=> 9 ≥ 2ac + bd + cd.
max A = 9 <=> 2a=c ; b=d.
Cho a,b,c,d thỏa mãn a+2b=9;c+2d=4.Tìm min \(T=\sqrt{a^2+b^2-12a-8b+52}+\sqrt{a^2+b^2+c^2+d^2-2ac-2bd}+\sqrt{c^2+d^2-4c+8d+20}\)
ko làm cấm spam
\(\sqrt{a^2+b^2-12a-8b+52}=\sqrt{\left(a-6\right)^2+\left(b-4\right)^2}\)
\(\sqrt{a^2+b^2+c^2+d^2-2ac-2bd}=\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)
\(\sqrt{c^2+d^2-4c+8d+20}=\sqrt{\left(c-2\right)^2+\left(d+4\right)^2}\)
Tới đây s nữa thắng
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)