Tìm 3 số nguyên dương x,y,z sao cho:
(x-y)^3+(y-z)^3+3./z-x/=27
Tìm các số nguyên dương x,y,z sao cho (x-y)2 + (y-2)3+3 lz-xl=27
tìm các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn x^3+y^3+z^3=nx^2y^2z^2
Tìm bộ ba số nguyên dương x;y;z sao cho x^3+y^3+3xyz=z^3=(2x+2y)^2
Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là số nguyên dương : x^3+y^3+z^3=n\(x^2y^2z^2\)
tìm các số nguyên dương x, y, z sao cho 2^x+2^y+3^z=1184
Ta có tổng là 1 số chẵn
Mà 2x và 2y là số chẵn ( vì x,y nguyên dương)
=>3z chẵn, vô lí
Vậy không có x,y,z thỏa mãn đề bài
tìm số nguyên dương n sao cho tồn tại x,y,z nguyên dương thỏa mãn x3 +y3 +z3 = nx2y2z2
Bài 1: Tìm các số nguyên dương a,b thỏa mãn a+2 chia hết cho b và b+3 chia hết cho a.
Bài 2: Cho các số nguyên dương phân biệt x,y,z sao cho x3+y3+z3 chia hết cho x2y2z2. Tính P=(x3+y3+z3)/(x2y2z2)
Tìm số nguyên tố x,y,z sao cho x^3+y^3+z^3=x+y+z+2017
Từ :
\(x^3+y^3+z^3=x+y+z+2017\) \(\implies\) \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)
Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)
Vì x, y, z là các số nguyên nên
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3
Vậy không có số nguyên x,y,z nào thỏa mãn ycbt
Tìm tất cả các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)