Cho nửa đường tròn (O) đường kính, đường tròn (O') tiếp xúc ngoài với nửa đường tròn (O) tại M, tiếp tuyến tại D của đường tròn (O') vuông góc với EF tại H. CMR: 3 điểm D,M,E thẳng hàng hoặc D,M,F thẳng hàng
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn đó, kẻ hai tia tiếp tuyến Ax, By với (O). Gọi (I) là đường tròn tiếp xúc với Ax tại C và tiếp xúc ngoài với nửa đường tròn (O) tại F. Kẻ tiếp tuyến CE với (O) (E là tiếp điểm, E khác A), AE cắt tia By tại D. Cho AB = 2R.
a) Tính AC.BD theo R. Chứng minh CE^2 = CF.CB.
b) Đường thẳng vuông góc với By tại D cắt OE tại J, CE cắt DF tại G. Chứng minh:
- DF là tiếp tuyến của (O).
- G là tâm của đường tròn nội tiếp tam giác OIJ
Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa (O) , D là điểm thuộc đường kính AB. Qua D kẻ đường thẳng vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến tại C của nửa đường tròn cắt EF tại I. Chứng minh: a) I là trung điểm EF b) Đường thăng OC là tiếp truyến của đường tròn ngoại tiếp tam giác ECF.
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn đó, kẻ hai tia tiếp tuyến Ax, By với (O). Gọi (I) là đường tròn tiếp xúc với Ax tại C và tiếp xúc ngoài với nửa đường tròn (O) tại F. Kẻ tiếp tuyến CE với (O), (E là tiếp điểm, E khác A), AE cắt tia By tại D. Cho AB = 2R.
a). Tính AC.BD theo R. Chứng minh : CE2 = CF.CB.
b). Đường thẳng vuông góc với By tại D cắt OE tại J, CE cắt DF tại G.Chứng minh:
- DF là tiếp tuyến của (O).
- G là tâm của đường tròn nội tiếp tam giác OIJ.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho nửa đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Chứng minh:
a, I là trung điểm của CE
b, Đường thẳng OC là tiếp tuyến của đường tròn ngoại tiếp tam giác ECE
Cho đường tròn O bán kính R, đường kính AB, OC vuông góc vs AB M thuộc nửa đường tròn O , M khác A,B. Tiếp tuyến của nửa đường tròn O tại M cắt OC và tiếp tuyến tại A của nửa đường tròn lần lượt tại D,E, AE cắt BD tại F. Chứng minh EA.EF=R^2
cho nửa (O,R) đường kính AB=2R, dây AC = R , K là trung điểm của BC, Bx là tiếp tuyến của đường tròn, OK cắt Bx tại D, OD cắt đường tròn tại M, CH vuông góc với AB, I là trung điểm của CH, BI cắt tiếp tuyến tại A của đường tròn tại E . CMR D C E thẳng hàng
Cho nửa đường tròn (O) đường kính AB. Lấy C trên nửa đường tròn, gọi D là điểm trên đoạn AB. Kẻ đường vuông góc với AB tại D cắt BC tại F cắt AC ở E vẽ tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Cmr:
a) I là trung điểm của EF
b) OC là tiếp tuyến đường tròn ngoại tiếp tam giác ECF
Ý a mình làm được rồi nhưng k chắc chắn :)
ý a chứng minh IF , IE cùng bằng IC là ra
Sao k thấy được bình luận của các bạn là sao