SO SÁNH \(\frac{1^{500}}{2}\)VỚI \(\frac{1^{300}}{3}\)
So sánh
a) (-\(\frac{1}{5}\)) 300 và (-\(\frac{1}{3}\))500
b) -\(\frac{1}{2}^{5^1}^{^{^3}}\)với (-\(\frac{1}{3}\))3
em không thể trả lời được
cho em nhé
kết bạn với em nhé
So sánh \(\left(\frac{1}{3}\right)^{500}\) với \(\left(\frac{1}{5}\right)^{300}\)
\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)
\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)
Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)
3-500=(35)-100= 243-100
5-300= (53)-100 =125-100
243>125 => 243-100<125-100
Hay 3-500 <5-300
so sánh: \(\left(\frac{-1}{5}\right)^{300}\)và \(\left(\frac{-1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
kết quả so sánh x= \(\frac{\left(1\right)^{300}}{5}\)va y=\(\frac{\left(1\right)^{500}}{3}\)
mik đg cần gấp ai giú mik zơi:
1.so sánh
a)\(\left(\frac{-1}{5}\right)^{300}và \left(\frac{-1}{3}\right)^{500}\)
b)\(2^{90}và 5^{36}\)
a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)
\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)
Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)
\(5^{36}=\left(5^6\right)^6=15625^6\)
Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)
a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)
Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)
Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)
Vậy \(2^{90}>5^{36}\)
bài 4: so sánh
a) \(\left(\frac{-1}{5}\right)^{300}\) và \(\left(\frac{-1}{3}\right)^{500}\)
b) \(-\left(-2\right)^{300}\) và \(\left(-3\right)^{200}\)
giúp mk với mai mk nộp rồi thanks nhiều
Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100
(-1/3)^500=(-1/3^5)^100=(-1/243)^100
vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500
b, ta có:-(-2)^300=(2^3)^100=8^100
(-3)^200=(-3^2)^100=9^100
vì 8^100<9^100→-(-2)^300<(-3)^200
\(4^{x+1}.2=32\)
\(4^{x+1}=32:2\)
\(4^{x+1}=16\)
\(4^{x+1}=4^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
vậy \(x=1\)
\(\left(x-\frac{2}{3}\right)^2=\frac{25}{81}\)
\(\left(x-\frac{2}{3}\right)^2=\left(\frac{5}{9}\right)^2\)
\(\Rightarrow x-\frac{2}{3}=\frac{5}{9}\)
\(\Rightarrow x=\frac{11}{9}\)
vậy \(x=\frac{11}{9}\)
\(500^{300}=\left(500^3\right)^{100}=125000000^{100}\)
\(300^{500}=\left(300^5\right)^{100}\)
vì \(\left(500^3\right)^{100}< \left(300^3\right)^{100}\)nên\(500^{300}< 300^{500}\)
\(4^{45}=\left(4^9\right)^5=262144^5\)
\(3^{60}=\left(3^{12}\right)^5=531441^5\)
vì \(262144^5< 531441^5\) nên \(4^{45}< 3^{60}\)
So sánh (-3)5 và (-3)4
\(\left(-\frac{1}{5}\right)^{300}\) và \(\left(-\frac{1}{3}\right)^{500}\)
\(\left(-\frac{1}{2}\right)^{5^{1^3}}\) và \(\left(-\frac{1}{3}\right)^{3^{1^5}}\)
1. So sánh lũy thừa :
\(^{3^{500}}\) và \(^{7^{300}}\)
2.Cho s=\(\frac{3}{10}\)+ \(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)
chứng tỏ 1<S<2
1.
\(3^{500}=\left(3^5\right)^{100}\)
\(7^{300}=\left(7^3\right)^{100}\)
\(3^5< 7^3\Leftrightarrow3^{500}< 7^{300}\)
\(3^{500}=\left(3^5\right)^{100}\)
\(7^{300}=\left(7^3\right)^{100}\)
35 < 73 => 3500 <7300
B1:
3500=(35)100
7300=(73)100
Vì 35 < 73 =>3500 < 7300.