cho hình thang cân abcd đường cao ah biết hc bằng 6 tính đường trung bình hình thang abcd
Cho hình thang cân ABCD, AB//CD, AB<CD. Kẻ đường cao AH. Biết AH = 8cm, HC = 12cm. Tính diện tích hình thang ABCD.
Cho hình thang cân ABCD, DC là đáy lớn, AH là đường cao và HC=5cm. Tính độ dài đường trung bình của hình thang
(Gợi ý hạ đường vuông góc BQ)
gọi E,F lầ lượt là t/đ của AD và BC,mà tg ABCD là hthang cân nên ÈF là đg trung bình của hthang ABCD=>EF//DC. nối E vs H
xét tg AHD vuông tại H ( do AH^ DC) có:E là trung điểm của AD => HE là đg trung tuyến =>HE=ED=1/2.AD
ta có:ED=1/2 AD(E là t/đ của AD),FC=1/2BC(vì F là t/đ của BC).Mà AD=BC(tg ABCD là htang cân)=>ED=FC
xét tg EFCH có EF// CH(ví EF//DC,H thuộc DC)và EH=FC(=ED)=> tg EFCH là hbh=> EF=HC=5cm
Cho hình thang cân ABCD (AB//CD, AB < CD). Kẻ đường cao AH.
Biết AH = 8 cm, HC = 12 cm. Tính diện tích hình thang ABCD
Kẻ BK ^CD tại K Þ AB = HK
S A B C D = ( 2 H K ) + 2 K C ) . A H 2 = H C . A H = 96 c m 2
Cho hình thang cân ABCD (AB // CD) có I, J lần lượt là trung điểm của cạnh bên AD, BC. Đường cao AH sao cho DH = 6cm, HC = 30cm. Tính độ dài đường trung bình của hình thang đó
Kẻ đg cao BK
DC=DH+HC=36(cm)
Dễ thấy tg AHD bằng tg BKC(ch-gn)
Suy ra DH=KC=6(cm)
Suy ra HK=DC-DH-KC=24(cm)
Dễ thấy AHKB là hcn nên HK=AB=24(cm)
Mà IJ là đtb hình thang cân ABCD nên \(IJ=\dfrac{AB+CD}{2}=\dfrac{24+36}{2}=30\left(cm\right)\)
Cho hình thang cân ABCD, AB//CD, AB<CD. Kẻ đường cao AH. Biết AH = 8cm, HC = 12cm. Tính diện tích hình thang ABCD.
Giúp mình vớiiii (┬┬﹏┬┬)
cho hình thang cân ABCD (AB < CD) Vẽ AH vuông góc CD c/m: a) HD bằng đoạn thẳng nối trung điểm hai đường chéo b)HC bằng đường trung bình hình thang
Cho hình thang cân ABCD ( AB song song CD, AB < CD ). Kẻ đường cao AH. Biết AH = 8cm, HC = 12cm. Tính diện tích hình thang ABCD
Cho hình thang cân ABCD (AB//CD, AB nhỏ hơn CD). Kẻ đường cao AH. Biết AH dài 8cm, HC dài 12cm. Tính diện tích hình thang ABCD.
Cho hình thang cân ABCD ( AB song song CD, AB < CD ). Kẻ đường cao AH. Biết AH = 8cm, HC = 12cm. Tính diện tích hình thang ABCD