CHỨNG TỎ RẰNG VỚI MỌI SỐ TỰ NHIÊN n THÌ TÍCH (n+4)(n+7) chia hết cho 2
jup mik với mn
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.( n + 5) chia hết cho 2.
Mn giải giúp mik với.
Có 2 trường hợp
1 . Với k là số chẵn (2k với k thuộc N) ta có
2k.(2k + 5)
= 4 k
2 +10 k
= 2.(2k
2 + 5k) [ chia hết cho 2]
2 . Với k là số lẻ ( 2k + 1 với k thuộc N) ta có
(2k +1) ( 2k + 1 + 5)
= 2k.(2k+6) + 2k + 6
= 4k
2 + 12k + 2k + 6
= 2. ( 2k
2 + 6k + k + 3) [ chia hết cho 2]
* Nếu n lẻ :
\(\Rightarrow\)\(n+5\) chẵn
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
* Nếu n chẵn :
\(\Rightarrow\)\(n+5\) lẻ
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
Vậy với mọi số tự nhiên n thì \(n\left(n+5\right)⋮2\)
Chúc bạn học tốt ~
+) n lẻ \(\Rightarrow n=2k+1\Rightarrow n+5=2k+1+5=2k+6⋮2\)
\(\Rightarrow n.\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
\(\Rightarrow n.\left(n+5\right)⋮2\)
+) n chẵn \(\Rightarrow n=2k⋮2\Rightarrow n.\left(n+5\right)=2k\left(2k+5\right)⋮2\)
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4)(n+7) chia hết cho 2
Với n= 2k
=> (n+4).(n+7)
= (2k+4).(2k+7)
= 2(k+2)(2k+7) chia hết cho 2 (1)
Với n =2k+1
=> (n+4)(n+7)
= (2k+1+4).(2k+1+7)
= (2k+5).(2k+8)
= (2k+5) . 2(k+4) chia hết cho 2 (2)
Từ (1) và (2)
=> (n+4)(n+7) luôn chia hết cho 2 với mọi n
=> (n+4).(n+7) luôn là số chẵn với mọi N
k cho mk nha
vì n là số tự nhiên , nên n có dạng : 2k hoặc 2k+1.
Nếu n=2k thì (n+4)=2k+4 chia hết cho 2 .
Suy ra : (n+4).(n+7) chia hết cho 2.
Nếu n=2k+1 thì (n+7)=2k+1+7=2k+8 chia hết cho 2.
Suy ra : (n+4).(n+7) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+4).(n+7) chia hết cho 2.
suy
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4)(n+7) chia hết cho 2
Nếu N lẻ thì n+7 chẵn => Biểu thức chẵn
Nếu N chẵn thì n+4 chẵn => Biểu thức chẵn
=>ĐPCM
+ Nếu n là số chẵn thì n+4 là số chẵn =>( n+4)(n+7) chia hết cho 2
+ Nếu n là số lẻ thì n+7 là số chẵn =>(n+4)(n+7) chia hết cho 2
\(\left(n+4\right)\left(n+7\right)=n\left(n+11\right)+28\)
n(n+11) chia hết cho 2
28 chia hết cho 2
=>đpcm
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4).(n+7) là một số chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4).(n+5) chia hết cho 2
giúp mình nha ai nhanh nhất thì mik TICK cho
chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4).(n+5) chia hết cho 2
Ai nhanh mik tick chooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
vì n+4 là n+5 là hai số liên tiếp nên 1 trong hai số sẽ chia hết cho 2
=>(n+4).(n+5) chia hết cho 2 (đpcm)
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+7)(n+10) chia hết cho 2
Với mọi số tự nhiên n thì tích (n+7)(n+10) chia hết cho 2 vì nếu n là chẵn thì n+10 cũng là chẵn mà mọi số tự nhiên nào nhân với số chẵn cũng là số chẵn nên nếu n là chẵn thì tích đó chia hết cho 2
Nếu n là lẽ thì n+7 sẽ là số chẵn nên n+7 sẽ chia hết cho 2 vậy nếu n là lẽ thì tích đó chia hết cho 2
Suy ra, với mọi số tự nhiên n thì (n+7)(n+10) sẽ chia hết cho 2