Cho x / y = 10 ( với y khác 0 ). Tính giá trị của biểu thức M= ( 16x2 - 40xy) / (8x2 - 24xy)
Tính giá trị của biểu thức: \(\frac{16x^2-40xy}{8x^2-24xy}\). Biết \(\frac{x}{y}=\frac{10}{3}\)
Cho x/y=10. Tính giá trị biểu thức M= (16x^2- 40xy)/( 8x^2-24xy).
Các bạn giúp mình với
\(M=\frac{16x^2-40xy}{8x^2-24xy}\)ĐK:\(x^2-3xy\ne0;y\ne0\)
\(\frac{x}{y}=10\Rightarrow x=10y\)
\(M=\frac{2x^2-5xy}{x^2-3xy}\)=\(\frac{15}{7}\)
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
Tính giá trị của biểu thức A = 16x2 + 24xy + 9y2 tại x= -1 , y=0
\(16x^2+24xy+9y^2=\left(4x\right)^2+2.4x.3y+\left(3y\right)^2=\left(4x+3y\right)^2\)
Thay x = -1 ; y= 0
\(\left(4x+3y\right)^2=\left[4.\left(-1\right)+3.0\right]^2=16\)
Hay \(16x^2+24xy+3y^2=16\)
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
cho 3x-y=3z và 2+y=7z. Tính giá trị của biểu thức \(M=\frac{x^2-2xy}{x^2+y^2}\)(x khác 0,y khác 0)
Mình sửa lại đề cho đúng nhé
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)
Thế vô M ta được
\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)
\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)
\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)
thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)
thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Cho \(16x^2+24xy+9y^2=0\)
Tính giá trị của biểu thức \(\frac{x}{y}\)
16x^2 +24xy + 9y^2 = 4x+3y = 0
x = -3y/4 thay vao ta co;
(-3y/4)/y = -3/4