Tìm giá trị nhỏ nhất của\(\frac{x^2+2}{x+2}\)với x>0
cho biểu thức \(A=\frac{^{x^2}-2x+2011}{x^2}\) với x>0
tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
giúp mik với , giải thích dể hiểu cho mik với :D
a.với giá trị nào của x thì P = | x + \(\frac{3}{2}\) | có giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất.
b.với giá trị nào của x thì P = | 3 - x | + \(\frac{2}{5}\) có giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
b) có giá trị tuyệt đối của 3-x >=0 với mọi x
=> (giá trị tuyết đối của 3-x) + 2/5 >=2/5
=> P>=2/5
P = 2/5 khi 3-x=0 <=> x=3
Vậy P có giá trị nhỏ nhất là 2/5 khi x=3
giúp mình với
cho biểu thức A=\(\frac{x^2-2x+2011}{x^2}\)với x>0.Tìm giá trị của x để A đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
mình đg cần gấp ạ!!
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x^2-x+1}{x^2+x+1}\) Với x > 0
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x^2-x+1}{x^2+x+1}\) với x>0
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị của x để phân thức \(\frac{3x-2}{x^2-9}\) bằng 0
Tìm giá trị nhỏ nhất của phân thức A=\(\frac{6x^2-4x+4}{x^2}\)(x khác 0)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)
\(3x=2\)
\(x=\frac{2}{3}\)
Câu thứ 2 nha:
A = \(\frac{6x^2-4x+4}{x^2}\)= \(\frac{2x^2+4x^2-4x+1}{x^2}\)= \(2+\frac{\left(x-2\right)^2}{x^2}\)
Đặt B = \(\frac{\left(x-2\right)^2}{x^2}\)
Do x khác 0 =>\(\left(x-2\right)^2>=0\)và \(x^2\)\(>0\)
Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.
=> Min B = \(\frac{0}{x^2}\)= 0
=> Min A = 2 + 0 = 2
Dấu "=" xảy ra khi và chỉ khi (x-2)2 = 0
=> x-2 = 0
=> x = 2
1 .Cho x > 0 . Tìm giá trị nhỏ nhất của S = \(\frac{x^2+3}{x+1}\)
2 . Tìm giá trị lớn nhất của biểu thức P = \(\frac{2018}{x^2-6x+10}\)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3