Tìm 3 số nguyên tố x,y,z liên tiếp thỏa mãn A=x\(^2\)+y\(^2\)+z\(^2\) Là số nguyên tố
Tìm ba số nguyên tố liên tiếp x,y,z ( với x < y < z) thỏa mãn số C = x2+y2+z2 là một số nguyên tố.
Tìm ba số nguyên tố liên tiếp x, y, z (với x < y < z) sao cho số A = x^2 + y^2 + z^2 là 1 số nguyên tố
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
Tìm 3 số nguyên tố liên tiếp x; y; z(x<y<z) sao cho số A = x2+y2+z2 là một số nguyên tố.
(có lời giải)
1.Cho 3 số tự nhiên a,b,c đôi một khác nhau thỏa mãn a+b+c=0
tính A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ac/(a^2+c^2-b^2)
2.Tìm 3 số nguyên tố liên tiếp a,b,c để a^2+b^2+c^2 nguyên tố
3.Cho x,y,z đôi một khác nhau
cmr: M-1/(x-y)^2+1/(y-z)^2+1/(z-x)^2 là binhg phuiwng 1 số hữu tỉ
4.Cho A=(x^2+x+2)/(x^3-1)
Tìm x nguyên để A nguyên
5.Tìm x,y thỏa mãn (X^2+1)(x^2+y^2)=4x^2y
Giúp mk nha các bạn
tìm 3 số nguyên tố (x,y,z) thỏa mãn (x+y)(xy+1)=2^z
Tìm 3 số nguyên tố x,y,z đồng thời thỏa mãn x - y , y - z , x - z là các số nguyên tố.
Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y.\sqrt{2011}}{y-z.\sqrt{2011}}\)là số hữu tỉ và x2+y2+z2 là số nguyên tố
Tìm tất cả các số nguyên tố x,y,z thỏa mãn: (x+1)(y+2)(z+3)=4xyz MONG MỌI NGƯỜI GIÚP ĐỠ
Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)
Tìm các số nguyên tố x,y,z thỏa mãn:
(x+y)(xy+1)=2^y
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố