Tìm a sao cho
7a+73
_______ là số nguyên
5a+8
Câu 1:
Cho tỉ lệ thức:a+b+c/a+b-c = a-b+c/a-b-c
CMR:c=0 hoặc b=0
Câu 2:
Tìm số nguyên a sao cho:7a+73/5a+8 là số nguyên
Nhanh lên mình cần gấp
cho a , b là hai nguyên tố cùng nhau
tìm :
a, ƯCLN( 3a + 5b ; 5a + 8b )
b, ƯCLN( 5a + 7b ; 7a + 5b )
cho a,b là hai số nguyên tố cùng nhau . Chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau
Cho phân số A = \(\dfrac{5a+3}{7a+4}\) ( A ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, Tìm a ∈ N để Phân số A đạt giá trị lớn nhất
\(\dfrac{help}{me}\)
Cho Phân số A=\(\dfrac{5a+3}{7a+4}\) ( a ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, tìm a ∈ N để Phân số A đạt giá trị lớn nhất.
\(\dfrac{help}{me}\)
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)
tìm các số tự nhiên a,b sao cho
a) ab + 5a - 7b = 68
b) 7a - ab + 2b = 20
a) ab + 5a - 7b = 68
=>ab + 5a - 7b - 35 = 68 - 35
a(b + 5) - 7b - 7 .5 = 33
a(b + 5) - 7(b + 5) = 33
(b + 5)(a - 7) = 33
Phần còn lại bạn lập bảng nhé!
b) 7a - ab + 2b = 20
=> 7a - 14 - ab + 2b = 20 - 14
7a - 2.7 - b(a - 2) = 6
7(a - 2) - b(a - 2) =6
(a - 2)(7 - b) = 6
Phần còn lại bạn cũng lập bảng nhé!
Tìm các số nguyên tố a và b sao cho:
7a+b và ab+11 cũng là số nguyên tố
cho a,b là hai số nguyên tố cùng nhau. chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau. làm xong giải thích giúp mình nhé, mình tick choa
Lời giải:
Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$
$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$
$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$
$\Rightarrow b\vdots d$
Mà $5a+2b\vdots d$ nên $5a\vdots d$
Vì $(a,b)=1$ nên $(a,d)=1$
$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$
$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$
$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$
$\Rightarrow a,b\vdots 5$ (vô lý)
Vậy điều giả sử là sai. Tức 2 số đó ntcn.
Tìm các số nguyên tố a,b sao cho 5a+b và ab +13 cũng là số nguyên tố