CM : n+1 và 3.n+4 với n thuộc N là 2 số nguyên tố cùng nhau
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Cho a=1+2+3+...+n và b=2n+1 (với n thuộc N;n>1). CM: a và b là 2 số nguyên tố cùng nhau?
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n \(⋮2\)
=> ( n + 1 ) x n : 2 \(⋮1\), n > 1
=> a là số nguyên tố
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n ⋮2
=> ( n + 1 ) x n : 2 ⋮1, n > 1
=> a là số nguyên tố
tổng a là
\(\frac{n.\left(n+1\right)}{2}\)
do n và n+1 là hai số liên tiếp
\(\Rightarrow\)\(n.\left(n+1\right)⋮2\)
\(\Rightarrow\)\(\frac{n.\left(n+1\right)}{2}⋮1\left(n>1\right)\)
\(\Rightarrow\)a là số nguyên tố
\(\Rightarrow\)\(\left(a,b\right)=1\left(đpcm\right)\)
Chứng minh: (n+1) và (3.n+4) với n thuộc N là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( n+1,3.n+4) là a
Ta có : ( n+1) và ( 3.n+4)
Nên : n+1 chia hết cho a và 3.n+ 4 chia hết cho a
Nên : 3.n+3 Và 3.n+4 chia hết cho a
3.n+4 - 3.n-3 chia hết cho a
nên 1 chia hết cho a
nên a=1
Vậy ...
Gọi d \(\in\)ƯC(n+1;3n+4)
=> 3n+4 chia hết cho d
n+1 chia hết cho d =>3n+3 chia hết cho d
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+1 và 3n+4 là 2 số nguyên tố cùng nhau
=>đpcm
cho n thuộc N*, n và 10 là 2 số nguyên tố cùng nhau
CM: (n^4-1) chia hết cho 40
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A.n + 1 và 4n + 3 là nguyên tố cùng nhau n thuộc N
B.2n + 3 và 3n + 4 nguyên tố cùng nhau n thuộc N
A/ Đặt ƯCLN(n+1;4n+3) = d [ d thuộc N]
=> n+1 chia hết cho d
4n+3 chia hết cho d
=> 4n+4chia hết cho d [( n+1) x 4]
4n+3 chia hết cho d
=> (4n+4) - (4n+3) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN( n+1; 4n+3) = 1
=> n+ 1 và 4n+ 3 nguyên tố cùng nhau
Vậy .........................................
B/ Đặt ƯCLN (2n +3; 3n+ 4)= d [d thuộc N]
=> 2n + 3 chia hết cho d
3n+4 chia hết cho d
=> 6n+ 9 chia hết cho d [(2n+3) x 3]
6n+ 8 chia hết cho d [(3n+4) x 2]
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN(2n+3; 3n+4)=1
=> 2n+3 và 3n+4 nguyên tố cùng nhau
Vậy........................................................... Bye nha ! (^_^)
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
Giả sử k là ước của 2n+1 và n
Ta có
2n+1⋮k
n⋮k
Suy ra
2n+1⋮k
2n⋮k
Suy ra 2n+1là số lẻ (với mọi giá trị n thuộc N)
Suy ra 2nlà số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra 2n+1và 2nlà 2 số nguyên tố cùng nhau
Vậy 2n+1và nlà 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Cho A= 1+2+3+4+...+n và B = 2n +1 (Với n thuộc N, n > 2 )
Chứng minh rằng A và B là 2 số nguyên tố cùng nhau.
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau
Cho A= 1+2+3+4+...+n và B = 2n +1 (Với n thuộc N, n > 2 )
chứng minh rằng A và B là 2 số nguyên tố cùng nhau.
\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)
Gọi: d=UCLN(A,B)
Ta có:
\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)
\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)
Vậy: A và B là 2 số nguyên tố cùng nhau
CM :
2n+3 và 3n+4 nguyên tố cùng nhau với n thuộc N
Đặt \(d=\left(2n+3,3n+4\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)