C/m rằng với mọi số nguyên dương n thì
a, phân số\(Q=\frac{1+n^2+n^7}{1+n+n^8}\)ko tối giản
Chứng minh rằng phân số \(\frac{n^7+n^2+1}{n^8+n+1}\)không tối giản với mọi số nguyên dương n
\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2+1\right)}=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n^2+1}\)
=>phân số ban đầu chưa tối giản với mọi n
Chứng minh rằng phân số \(\frac{n^7+n^2+1}{n^8+n+1}\)
không tối giản với mọi số nguyên dương n.
Ta có :
\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)
\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)
\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)
\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)
\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)
Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)
CMR phân số\(A=\frac{n^7+n^2+1}{n^8+n+1}\) không tối giản với mọi số nguyên dương x.
Ta có :
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)
\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Mặt khác :
\(n^7+n^2+1=n^7-n+n^2+n+1\)
\(=(n-1)(n^6-1)+n^2+n+1\)
\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản
Hok tốt :>
CMR phân số \(A=\frac{n^7+n^2+1}{n^8+n+1}\) không tối giản với mọi n nguyên dương
cho A =\(\frac{2n+3}{n+1}\)
chứng minh rằng với mọi n là số nguyên dương thi A là 1 phân số tối giản
a) Chứng tỏ rằng: \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
b) Chứng minh rằng: Với mọi số nguyên dương n thì 3n+2 - 2n+2 + 3n - 2n chia hết cho 10
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
a) Goi UCLN(12n+1 ; 30n+2) la d
=> 12n+1 chia het cho d =>5(12n+1) chia het cho d =>60n+5 chia het cho d
30n+2 chia het cho d 2(30n+2) chia het cho d 60n+4 chia het cho d
=>(60n+5)-(60n+4) chia het cho d
=> 1 chia het cho d
=> d = 1
=>12n+1/30n+2 la phan so toi gian ( dpcm)
chứng minh phân số n^7+2n^2+n+2/n^8+n^2+2n+2 không tối giản với mọi số nguyên dương n
chứng minh phân số n^7+2n^2+n+2/n^8+n^2+2n+2 không tối giản với mọi số nguyên dương n
Chứng minh rằng với mọi số nguyên dương n, phân số sau là tối giản
\(\frac{2n+4}{n^2+4n+3}\)