CTR: Nếu tổng abc + efg chia hết cho 37 thì abcbefg chia hết cho 37
chứng minh nếu abc chia hết cho 37 thì cba chia hết cho 37 và bca chia hết cho 37
(abc) chia hết cho 37
=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
abc+cba +bca = 111(a+b+c) =37.3(a+b+c) chia hết cho 37
Nếu abc chia hết cho 37 => (cba+bca) chia hết cho 37 => cba chia hết cho 37 và bca chia hết cho 37
1. tích A= 1.2.3.4.........10 có chia hết cho 100 không ?
tích B= 2.4.6.8.........20 có chia hết cho 30 không?
2. CTR: abc + def chia hết cho 37 thì abcdef chia hết cho 37.
NHANH NHA CÁC BẠN! AI ĐÚNG MÌNH LIKE CHO! MÌNH ĐANG CẦN GẤP LẤM!
\(A=1.2.3.4........10\)
\(A=10.\left(2.5\right).1.3.4.6.7.8.9\)
\(A=100.1.3.4.6.7.8.9\)
Mà 100 chia hết cho 100 => 100.1.3.4.6.7.8.9 => A chia hết cho100
Bài 2 :
abc+def chia hết cho 37 (theo đề bài)
=> 1000(abc+def)chia hết cho 37
Ta có 1000abc+1000def <=> 1000abc+def+999def
hay abcdef+999def
Mà 999def chia hết cho 37 => abcdef chia hết cho 37 =>đpcm
A = 1. (2.5.10).3.4.6.7.8.9
A=100.1.3.4.6.7.8.9
A=A có thể chia cho 100
CMR nếu abc chia hết cho 37 thì bca chia hết cho 37 và cab chia hết cho 37
*abc, bca,cab có dấu gạch trên đầu
Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a
Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37 (1)
Mà abc chia hết cho 37 nên 10.abc chia hết cho 37 (2)
Từ (1) và (2) => bca chia hết cho 37
100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b
=cab +999(10a+b)=cab +37.27ab
Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37 (3)
Mà abc chia hết cho 37 nên 100abc chia hết cho 37 (4)
Từ (3) và (4)=> cab chia hết cho 37
Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
Nhớ **** cho mình nhé
CM abc+def chia hết cho 37
CTR abcdef chia hết cho 37?
CMR : Nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
Chúc bạn học tốt
Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a
Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37 (1)
Mà abc chia hết cho 37 nên 10.abc chia hết cho 37 (2)
Từ (1) và (2) => bca chia hết cho 37
100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b
=cab +999(10a+b)=cab +37.27ab
Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37 (3)
Mà abc chia hết cho 37 nên 100abc chia hết cho 37 (4)
Từ (3) và (4)=> cab chia hết cho 37
Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
nếu abc chia hết cho 37 thì cab và bca chia hết cho 37
Nguyễn Thành Long |
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
(abc) chia het cho 27 => a . 100 + 10.b + c chia het cho 37
=> a000 + bc0 chia het cho 37
=> 1000.a + bc0 chia het cho 37
=> 999.a + a + bc0 chia het cho 37
=> 27 x 37 x a + bca chia het cho 37
cab tuong tu
Ta có : ( abc ) chia hết cho 27 => a . 100 + 10.b + c chia hết cho 37 .
\(\Rightarrow\) a000 + bc0 \(⋮\)cho 37
\(\Rightarrow\)1000 . a + bc0 \(⋮\) cho 37
\(\Rightarrow\) 999 . a + a + bc0 \(⋮\) cho 37
\(\Rightarrow\) 27 37 x a + bca \(⋮\) cho 37
Chứng minh rằng nếu abc + deg chia hết cho 37 thì abcdeg chia hết cho 37
Ta có: abcdeg = abc.1000 + deg = 999.abc + abc + deg = 37.27.abc + (abc + deg).
Do 37.27.abc chia hết cho 37 nên nếu abc + deg chia hết cho 37 thì thì abcdeg chia hết cho 37.
Chứng minh rằng nếu abc + def chia hết cho 37 thì abcdef chia hết cho 37
abc+def = a*100000+b*10000+c*1000+d*100+e*10+f*1 = (a*b*c+d*e*f)*(100000+10000+1000+100+10+1) =(a*b*c+d*e*f)*111111 vì 111111 chia hết cho 37 nên (a*b*c+d*e*f) chia hết cho 37 => DPCM
Mk cũng đâu cần bạn trả lời,tự dưng vô đây ns ko làm,ko làm thì thôi có ai ép đâu.Mà tui cũng ko rảnh tiếp mấy Quèn
abcdef=abc×1000+def=999abc+(abc+def)=37×27×abc+(abc+def) chia hết cho 37 vì 37 chia hết cho 37
Chắc chắn đúng lớp tôi làm đầy rồi dễ mà
chứng minh rằng nếu abc chia hết cho 37 thì bac và cab đề chia hết cho 37
kkk, thế này mà cũng hỏi:
abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả
=> abc,bac,cab đều chia hết cho 37
(abc) chia hết cho 37 =>100.a+10. b+c chia hết cho 37 => 1000.a-999,a+100.b+10.c chia hết cho 37( vì 999.a chia hết cho 37)=>100.c+a=(bca)chia hết cho 37.