Tìm ƯCLN của 2n-1 và 9n+4(n thuộc N*)
Tìm ƯCLN của 2n-1 và 9n + 4 (n thuộc N*)
Tìm ƯCLN của 2n-1 và 9n+4(n thuộc N)
Gọi ƯCLN( 2n - 1 ; 9n + 4 ) là d
=> 2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d
=> 1 chia hết cho d
=> d thuộc { -1 ; 1 }
=> ƯCLN( 2n - 1 ; 9n + 4 ) là 1
Gọi d là ƯCLN(2n - 1; 9n + 4)
=> 2n - 1 ⋮ d và 9n + 4 ⋮ d
=> 9(2n - 1) ⋮ d và 2(9n + 4) ⋮ d
=> 18n - 9 ⋮ d và 18n + 8 ⋮ d
=> (18n + 8) - (18n - 9) ⋮ d
=> 17 ⋮ d => d = 17
Vậy ƯCLN(2n - 1; 9n + 4) = 17
The lonely cancer sai rồi
(18n - 9) - (18n + 8) = - 17 chứ sao = 1 được !!!
tìm ƯCLN(2n-1 và 9n+4 ) n thuộc N*
5 tick
gọi ƯC(2n-1 và 9n+4) =d suy ra 2n-1 chia hết cho d ; 9n+4 chia hết cho d
suy ra : (9n+4)-(2n-1) chia hết cho d
suy ra 2.(9n+4)-9.(2n-1) chia hết cho d
suy ra (18n+8)-(18n-9) chia hết cho d
suy ra 17 chia hết cho d ;suy ra d thuộc tập hợp 1;17(chỗ này bạn dùng kí hiệu nhé )
ta có 2n-1 chia hết cho 17 suy ra 2n-18 chia hết cho 17
suy ra 2.(n-9) chia hết cho 17
suy ra n-9 chia hết cho 17
suy ra n=17.k+9(k thuộc N)
+nếu n=17k+9 thì 2n-1 chia hết cho 17;9n+4=9.(17k+9)+4=bội 17+85 chia hết cho 17
do đó (2n-1;9n+4)=17
+nếu n khác 17k+9 thì 2n-1 ko chia hết cho 17 suy ra (2n-1;9n+4)=1
tick cho mình nhé!thank you very much
http://pitago.vn/question/tim-ucln-cua-2n-1-va-9n-4-n-in-n-4641.html
1.Tìm ƯCLN của 2n -1 và 9n + 4 ( với n thuộc số tự nhiên).
2.Tìm ƯCLN của 7n + 3 và 8n - 1 ( với n thuộc số tự nhiên).
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
1. a. Tìm UCLN của 2n - 1 và 9n + 4 ( n thuộc n sao)
b. ƯC ( 2n + 1, 3n+ 1)
c. ƯCLN ( 7n + 3, 8n- 1
Giải thế ai hiểu nổi hả trời???
Với n thuộc số tự nhiên, tìm ƯCLN của 2n-2 và 9n+4
Gọi d là ƯCLN(2n - 1; 9n + 4) Nên ta có :
2n - 1 ⋮ d và 9n + 4 ⋮ d
9(2n - 1) ⋮ d và 2(9n + 4) ⋮ d
18n - 9 ⋮ d và 18n + 8 ⋮ d
(18n + 8) - (18n - 9) ⋮ d
17 ⋮ d . Mà d lớn nhất => d = 17
Vậy ƯCLN(2n - 1; 9n + 4) = 17
Gọi ƯCLN(2n-2; 9n+4) = d
=> 2n-2 \(⋮\)d; 9n+4 \(⋮\)d
=> (2n-2) -( 9n+4) \(⋮\)d
=> 9( 2n-2) - 2(9n+4) \(⋮\)d
=> ( 18n -18 ) - ( 18n+8) \(⋮\)d
=> 18n -18 - 18n - 8 \(⋮\)d
=> 26 \(⋮\)d
=> d \(\in\){1; 26; 13; 2}
Sau b thay d bằng từng gt 1 thầy 1 thỏa mãn hay s ấy
Vậy...
K chắc nhaaaaaaaaaaaaaaaa
Gọi ƯCLN (2n-2; 9n+4)=d (d thuộc N*)
=> 2n-2 và 9n+4 chia hết cho d
=> 9(2n-2) và 2(9n+4) chia hết cho d
=> 18n-18 và 18n+8 chia hết cho d
=> (18n-18)-(18n+8) chia hết cho d
=> 18n-18-18n-8 chia hết cho d
=> -26 chia hết cho d
Vì d là ƯCLN (2n-2;9n+4) => d=26
Vậy ƯCLN (2n-2;9n+4)=26
tìm ƯCLN của 2n-1 và 9n+4 (n thuộcN)
Tìm ƯCLN
a, (2n-1; 9n+4) n thuộc N
Tìm ƯCLN(2n+1:9n+5) với n thuộc N