Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen anh
Xem chi tiết
Bé Kute Trân
Xem chi tiết
Vegeta
19 tháng 7 2016 lúc 20:38

\(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)

Lê Song Phương
21 tháng 11 2021 lúc 6:19

Ta có: \(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)

\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{99}\left(1+4\right)\)

\(A=\left(1+4\right)\left(4+4^3+4^5+...+4^{99}\right)\)

\(A=5\left(4+4^3+4^5+...+4^{99}\right)⋮5\)

\(\Rightarrow A⋮5\)(đpcm)

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Thảo Uyên
3 tháng 1 2020 lúc 18:40

Ta có:

A = 4 + 4 + 43 + 44 + ... + 499 + 4100

A = (4 + 42) + (43 + 44) + ... + (499 + 4100)

A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)

A = 4.5 + 43.5 + ... + 499.5

A = 5.(4 + 43 + ... + 499)

Vậy A chia hết cho 5

Khách vãng lai đã xóa
Sinh Học
3 tháng 1 2020 lúc 18:43

\(A=4+4^2+4^3+...4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)

\(A=4.5+4^3.5+..4^{99}.5\)

\(A=5.\left(4+4^3+...4^{99}\right)\)

\(\Rightarrow A⋮5\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
14 tháng 4 2020 lúc 15:57

A=4+42+43+44+......+499+4100

=> A=(4+42)+(43+44)+......+(499+4100)

=> A=4(1+4)+43(1+4)+.....+499(1+4)

=> A=4.5+43.5+.....+499.5

=> A=5(4+43+....+499)

=> A chia hết cho 5 (đpcm)

Khách vãng lai đã xóa
Nguyen Hanh Dung
Xem chi tiết
Phạm Nguyễn Anh Khôi
16 tháng 9 2019 lúc 22:35

ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.

=>Số số hạng của mũ là:

100-1:1=100

mà 100 chia hết cho 4 

=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0

Nguyễn Văn Minh
16 tháng 12 2021 lúc 21:37
Hello. ..........
Khách vãng lai đã xóa
Lê Đăng Đức Anh
Xem chi tiết
thiiee nè
22 tháng 12 2021 lúc 21:51

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

Kẹo Nek
Xem chi tiết
Hoàng Diễm Quỳnh
3 tháng 11 2023 lúc 10:10

không bt nữa

Nguyễn Đình Phong
8 tháng 1 lúc 20:12

Lồn cặc

 

Trang
Xem chi tiết
Trần Thanh Phương
30 tháng 11 2018 lúc 11:50

\(A=2+2^2+2^3+...+2^{100}\)

\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+2^2\cdot7+...+2^{98}\cdot7\)

\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)

Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)

\(\Rightarrow\) A chia 7 dư 2

Lưu Ngọc Quý
30 tháng 11 2018 lúc 13:05

A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)

A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)

A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7

A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)

Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7

⇒⇒ A chia 7 dư 2

Chippii
Xem chi tiết
Hồ Thị Quỳnh Tiên
9 tháng 8 2017 lúc 17:38

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

Nguyễn Thị Hải
9 tháng 8 2017 lúc 19:24

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

tìm toi
16 tháng 8 2020 lúc 13:45

a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba 

b)Cm B=10 mũ 100 cộng 17 chia hết cho 9

c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2

mong mọi người trả lời giúp mik cảm ơn các bạn

Khách vãng lai đã xóa
Nguyễn Lê Nhã Phương
Xem chi tiết