Tìm GTNN: \(\frac{8-x}{x-3}\)với x thuộc Z
Tìm GTNN của : A= | x-2 |+| y+5|-10 . Với x,y thuộc Z
B=( x-8)^2+2008.Với x thuộc Z
Tìm GTLN của: C=-( x-5)^2+2 . Với x thuộc Z
D=2007-(x-5)^2.Với x thuộc Z
Tìm GTNN của A=\(\frac{x}{x+3}\)
Với x thuộc Z
Ta có: Với x là số cố định => để A có GTNN thì x+3 có giá trị lớn nhất
=> x+3 là số nguyên âm lớn nhất
=>x+3=-1
=>x=-1-3
=>x=-4
Vậy x=-4 thì A có GTNN
\(A=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}.\)( x thuộc Z và x # -3 )
A đạt giá trị nhỏ nhất khi \(\frac{3}{x+3}\)đạt giá trị lớn nhất
Với x thuộc Z và x # -3 ta có : \(\frac{3}{x+3}\le\frac{3}{-2+3}=3\)=> giá trị lớn nhất của \(\frac{3}{x+3}\)= 3 khi x = -2
Vậy GTNN A = 1 - 3 = - 2 Khi x = -2
Cho A = \(\frac{x-13}{x+3}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
Tìm GTNN của
A= \(\frac{X}{x+3}\)
Với x thuộc Z
\(A=\frac{x}{x+3}=1-\frac{3}{x+3}\)
Để A đật GTNN <=> \(\frac{3}{x+3}\)đạt GTLN <=> \(x+3\)đạt GTNN <=> \(x=0\)
Với x=0 thì Giá trị Của A là 0
Ta có : \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}\)\(=1-\frac{3}{x+3}\)
=> Để A có GTNN thì \(\frac{3}{x+3}\) có GTLN
Ta có: 3>0 và \(\frac{3}{x+3}\) có GTLN => x+3 nhỏ nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1 => x=1-3=-2
Vậy x=-2 hì A có GTNN.
Tìm GTNN \(B=\frac{8-x}{x-3}\)với \(x\in Z\)
x,y,z, dương tm:x+y+z>=3. Tìm GTNN của P= \(\frac{x^2}{yz+\sqrt{8+x^3}}+\frac{y^2}{xz+\sqrt{8+y^3}}+\frac{z^2}{xy+\sqrt{8+z^3}}\)
a) Tìm GTNN của M = /x-1/ + /x-2/ + /x-3/
b) Với x thuộc Z, tìm GTNN của N= 2016-x/x-2016
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=3\end{cases}}\)Tìm GTNN của \(A=\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
B=\(\frac{3}{x-7}\)đạt GTNN
tìm x thuộc Z
\(B=\frac{3}{x-7}\)
Để B đạt GTNN thì \(x-7\) có GTLN
Mà x thuộc Z
=> x - 7 = 3
=> x = 7 + 3
=> x = 10
ta có 3/x-7 là số nguyên
suy ra 3 chia het cho x-7
hay bay thuoc uoc cua 3=cong tru 1 cong tru 3
roi lap bang voi tung gia tri
Để \(\frac{3}{x-7}\)đạt giá trị nhỏ nhất
=> x-7\(\ge0\)
=> x-7=1
=> x=8