Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Trần Nhất Nguyên
Xem chi tiết
phuong ngoc
Xem chi tiết
Mai Đức Minh
2 tháng 12 2021 lúc 9:29

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

Khách vãng lai đã xóa
Gokuto
Xem chi tiết

undefined

Nhók Con
Xem chi tiết
cao nguyễn thu uyên
17 tháng 2 2016 lúc 10:59

nhấn vào nhé Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10 sẽ có đáp án đó

duyệt đi

Nguyễn Quang Thành
17 tháng 2 2016 lúc 11:17

  Cần phải chứng minh

Bạn tham khảo cái này nhé!

https://olm.vn/hoi-dap/detail/3583684010.html

Khách vãng lai đã xóa
Đức Thuận Nguyễn
Xem chi tiết
Lãnh Hạ Thiên Băng
13 tháng 10 2016 lúc 18:43

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

Đức Thuận Nguyễn
13 tháng 10 2016 lúc 18:46

Bạn thật tài giỏi

SKT_ Lạnh _ Lùng
13 tháng 10 2016 lúc 18:48

Câu Hỏi Tương Tự Đấy !

Khen ko đúng lúc !

Nguyễn Mạnh Khôi
Xem chi tiết
Nguyễn Hoàng Tiến
16 tháng 5 2016 lúc 21:51

Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4

Giả sử x chia hết cho 5 => ĐPCM

Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5

Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5

điều phải chứng minh

Dũng Chu
6 tháng 5 lúc 21:08

Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4

Giả sử x chia hết cho 5 => ĐPCM

Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5

Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5

 

Lê Minh Đạo
Xem chi tiết
Michiel Girl mít ướt
24 tháng 3 2015 lúc 10:33

 Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

 

phung viet hoang
24 tháng 3 2015 lúc 10:24

Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

Michiel Girl mít ướt
24 tháng 3 2015 lúc 10:34

vậy cho mk hỏi: đpcm là j`

Ngô Văn Nam
Xem chi tiết
Nguyễn Thị Khánh Huyền
20 tháng 12 2015 lúc 16:35

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

Tick nha

Potter Harry
20 tháng 12 2015 lúc 16:34

tick nhé:http://olm.vn/hoi-dap/question/61032.html

Cua nhỏ
20 tháng 12 2015 lúc 16:39

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

* đi

Nguyễn Minh Hiển
Xem chi tiết
Ngọc Diệu
29 tháng 3 2021 lúc 19:43

Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10

Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:

(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)

⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10

(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00

⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)

Sm=a1+a2+...+amSm=a1+a2+...+am

Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an

⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0

⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10

Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)