Cho tam giác ABC cân tại A, góc A = 36 độ. Vẽ tia phân giác của góc B cắt AC tại D.Chứng minh rằng AD = BC
cho tam giác ABC cân tại A, góc A =20 độ. Vẽ tam giác đều DBC vào trong tam giác ABC rồi vẽ tia phân giác của góc ADB cắt AC tại M. Chứng minh rằng: a) Tia AD là tia phân giác của góc A b) góc ABM =1/2 góc A c) AM=BC
cho tam giác ABC cân tại A.có A=100.tia phân giác góc B cắt AC Tại D.chứng Minh AD+BD=BC
Cho tam giác ABC cân tại A có góc A = 36 độ. Vẽ tia phân giác của góc B cắt AC tại D. CMR : AD = BC
tg adb can tai d ( a= b =36o ) => DB=DA
tg dbc can tai b ( d=c =72o ) => BD=BC
vậy AD =BC (dpcm)
(chuc ban hoc gioi)
Cho tam giác ABC cân tại A có góc A=20 độ, vẽ tam giác đều DBC( D nằm trong tam giác ABC). Tia phân giác của góc ABC cắt AC tại M. Chứng minh:
a) Tia AD là phân giác của góc BAC
b) AM=BC
Cho tam giác ABC cân tại A ( góc A = 100 độ). Tia phân giác của góc ABC cắt AC tại D. Chứng minh rằng BD + AD = BC
Trên cạnh BC lấy điểm E sao cho BD=BE.
Dễ thấy: ^DBE = ^ABC/2 = 400/2 = 200 => ^BED = ^BDE = (1800 - ^DBE)/2 = 800 => ^DEC = 1000
Tam giác DEC có: ^DEC = 1000; ^ECD = ^ACB = 400 => Tam giác DEC cân tại E => ED=EC
Dễ dàng c/m được AD=ED (Gợi ý: Hạ DH, DK vuông góc AB,BC). Từ đó: EC = AD
Vậy thì BC = BE + EC = BD + AD (đpcm).
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
cho tam giác ABC cân tại A có góc A=20 độ, vẽ tam giác đều DBC( D nằm trong tam giác ABC).Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
a) Tia AD là phân giác góc BAC
b) AM=BC
http://d.violet.vn//uploads/resources/285/2783442/preview.swf
trang 73
link này k dùng đc aq///lm ơn gửi link khác dùm mik
a) Chứng minh ADB = ADC (c.c.c) 1đ
suy ra
Do đó
b) ABC cân tại A, mà (gt) nên
ABC đều nên
Tia BD nằm giữa hai tia BA và BC suy ra . Tia BM là phân giác của góc ABD
nên
Xét tam giác ABM và BAD có:
AB cạnh chung ;
Vậy: ABM = BAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC
Cho tam giác ABC cân tại A có góc A = 20 độ, vẽ tam giác DBC ( D nằm trong tam giác ABC). Tia phân giác góc ABD cắt AC tại M. Chứng minh:
a). Tia AD là tia phân giác góc BAC
b). AM=BC
DBC có phải là tam giác đều ko bạn ?