tim nghiem nguyen duong \(x^3y+xy^3-3x-3y=17\)
tim x;y
\(x^3y+xy^3-3x-3y=17\)
tim nghiem nguyen cua phuong trinh
x^3-y^3-2y^2-3y-1=0
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
tim nghiem nguyen duong cua phuong trinh xy^2+2xy+x = 32y
Tim nghiem nguyen duong cua pt:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)
=>\(3>=3\sqrt[3]{xyz}\)
=>\(1>=\sqrt[3]{xyz}\)
=>\(1>=xyz\)
dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1
vay x=y=z=1
tim x,y nguyen duong de:
x2+3y va y2+3x la so chinh phuong
tim cap so nguyen xy sao cho :x+3y=xy+3
ta có : \(x+3y=xy+3\Leftrightarrow x+3y-xy-3\Leftrightarrow-xy+3y+x-3\)
\(\Leftrightarrow-y\left(x-3\right)+\left(x-3\right)=\left(1-y\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\) vậy \(y=1;x=3\)
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
tim cap so nguyen (x, y) sao cho : x+3y=xy+3
\(x+3y=xy+3\)
\(\Leftrightarrow x+3y-xy-3=0\)
\(\Leftrightarrow x-xy+3y-3=0\)
\(\Leftrightarrow x\left(1-y\right)-3\left(1-y\right)=0\)
\(\Leftrightarrow\left(1-y\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
Vậy phương trình trên bằng nhau xảy ra khi
\(x=3\) và \(y=1\)
1. Tim nghiem nguyen cua pt:
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
2. Tim nghiem nguyen duong:
\(2+\sqrt{x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}}=4\)
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
có đúng đề không bạn