chọn 5 người bất kỳ . chứng minh rằng có út nhất 2 người có cùng số người quen trong 5 người đó
Chọn 1 cách tùy ý 5 người . Chứng minh rằng trong số 5 người chọn ra đó , ít nhất có 2 người có cùng số người quen
chứng minh rằng trong n người bất kỳ ( n lớn hơn hoặc bằng 2 ) , tồn tại hai người có cùng số người quen như nhau ( kể cả trường hợp quen 0 người )
Vì quan hệ quen biết có tính chất 2 chiều: Nếu a quen b thì b quen a
Ta chia n người đã cho vào n nhóm:
+Nhóm 0: Gồm những người có số người quen là 0 ( ko quen ai trong số n-1 người còn lại)
+Nhóm 1: Gồm những người có số người quen là 1
+Nhóm 2: Gồm những người có số người quen là 2
.....................
+Nhóm n-1: gồm những người có số người quen là n-1 ( quen cả n-1 người còn lại)
Ta thấy nhóm 0 và nhóm n-1 ko đồng thời xảy ra vì nếu cóa người quen cả n-1 người còn lại thì ko thể có người nào ko quen ai trong n-1 người còn lại
Như vậy có n người (n\(\geq\)2) mà chỉ có nhiều nhất n-1 nhóm đó là: Nhóm 0;1;2;...;n-2 hoặc nhóm 1;2;3;...;n-1. Nên phải tồn tại ít nhất 2 người cùng 1 nhóm
Tức là tồn tại ít nhất 2 người có số người quen như nhau. (ĐPCM)
k and kb nha!!!!!
Trong một cuộc thi chung kết học sinh giỏi của 5 học sinh. Ban giám khảo nhận thấy, cứ trong 3 bạn học sinh bất kỳ thì có hai người quen nhau và hai người không quen nhau. Chứng minh rằng trong 5 học sinh đó, có 1 bạn học sinh quen đúng 2 bạn trong nhóm
Trong phòng có 100 người,mỗi người quen ít nhất 67 người khác. chứng minh rằng chắc chắn tìm được 4 người mà 2 người bất kì trong số đó quen nhau
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen và \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)
Ra đường gặp 6 người bất kỳ, Hãy chứng minh trong 6 người đó có 3 người quen nhau hoặc có 3 người không quen nhau?
Do có 6 người bất kỳ nên ta đặt tên 6 người đó là A; B; C; D; E; F ứng với 6 điểm A; B; C; D; E; F như hình vẽ:
Nếu hai người quen nhau thì ta nối họ bới một đoạn thẳng màu đỏ.
Nếu hai người không quen nhau thì ta nối họ bởi một đoạn thẳng mầu đen.
Dễ thấy từ A có 5 đoạn thẳng AB; AC; AD; AE; AF. Mỗi đoạn thẳng này được vẽ bằng một trong hai màu đen và đỏ tất nhiên phải có 3 đoạn cùng được vẽ bằng một màu.
Không mất tính tổng quát, ta giả sử có 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đỏ ( Xem hình vẽ).
Xét tam giác EBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh này cùng được vẽ bằng một màu đen thì Người E, người B và người D không quen biết nhau ( ĐPCM). Nếu ba cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đỏ (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đỏ. Khi đó tam giác ABD có 3 cạnh màu đỏ nghĩa là Người A, người B và người D quen nhau ( Điều phải chứng minh).
Nếu 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đen ta vẫn xét tam giácEBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh của tam giác EBD cùng mầu đỏ thi 3 người E; B; D quen nhau. Nếu 3 cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đen (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đen. Khi đó tam giác ABD có 3 cạnh màu đen nghĩa là Người A, người B và người D không hề quen biết nhau ( Điều phải chúng minh).
Cho 5 người tùy ý. Chứng minh rằng trong số đó có ít nhất là hai người có số người quen bằng nhau ( chú ý là A quen B thì B quen A).
Có 5 người nên số người quen nhiều nhất của mỗi người là 4.
Phòng 0: Chứa những người không có người quen.
Phòng 1: Chứa những người có 1 người quen.
………………………………………………………
Phòng 4: Chứa những người có 4 người quen.
Để ý rằng phòng 0 & phòng 4 không thể cùng có người.
Thực chất 5 người chứa trong 4 phòng.
Theo nguyên lý Dirichlet tồn tại một phòng chứa ít nhất 2 người. Từ đó có điều phải chứng minh.
Giúp tôi những bài sau:
Bài 1: Trong các số tự nhiên từ 1 đến 27, chọn ra 15 số tự nhiên bất kỳ. CMR trong 15 số đó luôn tồn tại một nhóm 3 số, mà số lớn nhất bằng tổng hai số còn lại.
Bài 2: Trong một cuộc họp 8 người ngồi trên một bàn tròn, biết rằng mỗi người đều quen ít nhất 5 người. CMR ta có thể xếp 8 người đó sao cho những người ngồi cạnh nhau đều quen nhau.
Trong một lớp học có ít nhất 2 bạn quen nhau. Biết rằng nếu hai bạn có cùng một số lượng người quen thì không có người quen chung. Chứng minh rằng trong lớp có bạn chỉ quen có đúng 1 người.
áp dụng tính châts sơn tùng vẽ nên thôi thì có đpcm
trong phòng họp có 100 người, mỗi người quen ít nhất 67 người còn lại. chứng minh chắc chắn tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau