Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Bách
Xem chi tiết
Nguyễn Linh Chi
22 tháng 3 2020 lúc 22:50

Em tham khảo!

Khách vãng lai đã xóa
Vũ Hoàng Minh
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
Lê Quỳnh Hương
Xem chi tiết
Bây Âu Thị
9 tháng 4 2016 lúc 21:33

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

Trần Đình Hòa
Xem chi tiết
Lê Trần Ngọc Hân
Xem chi tiết
Nguyễn minh anh
Xem chi tiết
Nguyễn Ngân Phương
Xem chi tiết
Cao Văn	Phong
Xem chi tiết
Nguyễn Thái Thịnh
23 tháng 1 2022 lúc 10:39

Ta có: \(\widehat{ADB}+\widehat{ADC}=180^o\) (2 góc kề bù)

Mà \(\widehat{ADC}=150^o\)

\(\Rightarrow\widehat{ADB}=30^o\)

Khách vãng lai đã xóa
Giang Công Chiến
23 tháng 1 2022 lúc 19:36
Góc ADB=30°
Khách vãng lai đã xóa
Bao Huy
30 tháng 5 lúc 1:11

Để giải bài toán này, ta cần tìm giá trị của mm sao cho phương trình 16x−m⋅4x+1+5m2−45=016^x - m \cdot 4^{x+1} + 5m^2 - 45 = 0 có hai nghiệm phân biệt.

Bước 1: Đặt t=4xt = 4^x. Khi đó, phương trình trở thành: 16x−m⋅4x+1+5m2−45=016^x - m \cdot 4^{x+1} + 5m^2 - 45 = 016x=(4x)2=t216^x = (4^x)^2 = t^24x+1=4⋅4x=4t4^{x+1} = 4 \cdot 4^x = 4t, ta có: t2−4mt+5m2−45=0t^2 - 4mt + 5m^2 - 45 = 0

Bước 2: Phương trình này là một phương trình bậc hai đối với tt. Để phương trình có hai nghiệm phân biệt, thì điều kiện cần là: Δ>0\Delta > 0 Trong đó, Δ\Delta là biệt thức của phương trình bậc hai: Δ=(4m)2−4⋅1⋅(5m2−45)\Delta = (4m)^2 - 4 \cdot 1 \cdot (5m^2 - 45) Δ=16m2−20m2+180\Delta = 16m^2 - 20m^2 + 180 Δ=−4m2+180\Delta = -4m^2 + 180

Để phương trình có hai nghiệm phân biệt: −4m2+180>0-4m^2 + 180 > 0 −4m2>−180-4m^2 > -180 m2<45m^2 < 45 −45<m<45-\sqrt{45} < m < \sqrt{45}mm là số nguyên, ta có: −35<m<35-3\sqrt{5} < m < 3\sqrt{5} −35≈−6.71vaˋ35≈6.71-3\sqrt{5} \approx -6.71 \quad \text{và} \quad 3\sqrt{5} \approx 6.71 Nên giá trị nguyên của mm nằm trong khoảng từ -6 đến 6, tức là: m=−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6m = -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6

Có tất cả 13 giá trị của mm thỏa mãn điều kiện này.

Tuy nhiên, đề bài yêu cầu phương trình phải có nghiệm phân biệt, chúng ta phải kiểm tra các nghiệm của phương trình t2−4mt+5m2−45=0t^2 - 4mt + 5m^2 - 45 = 0.

Phương trình này có hai nghiệm phân biệt khi: t>0t > 0

Do đó, ta cần đảm bảo tt dương. Ta kiểm tra các giá trị mm từ -6 đến 6, chỉ có 3 giá trị của mm thoả mãn điều kiện này (3 < m < 3√5).

Kết luận: Có 3 giá trị mm thoả mãn điều kiện, do đó tập hợp S có 3 phần tử.

Đáp án đúng là: B. 3

4o