cho a, b dương thõa mãn : \(a^3+b^3=3ab-1\)
CMR:\(a^{2018}+b^{2018}=2\)
cho a,b dương thỏa mãn \(a^3+b^3=3ab-1\)
cm a2018-b2018=2
Sửa đề cm a2018+b2018=2
Ta có:\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3+1-3ab=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)
Vì a,b > 0 => a + b + 1 > 0
=>\(a^2+ab+b^2-a-b+1=0\)
=>2a2+2ab+2b2-2a-2b+2=0
=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0
=>(a+b)2+(a-1)2+(b-1)2=0
Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)
=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1
=>\(a^{2018}+b^{2018}=1+1=2\)
Cho các số dương a,b để thỏa mãn : \(a^3+b^3=3ab-1\) CMR:\(a^{2018}+b^{2019}=2\)
Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo
Cho a,b>0 thoả mãn a3+b3=3ab-1
CMR: a2018+b2019=2
Thanks nha! I love you!
\(a^3+b^3=3ab-1\)
\(\Rightarrow a^3+b^3+1-3ab=0\)
\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)
Mà \(a,b>0\Rightarrow a+b+1>0\)
\(\Rightarrow a^2-ab+b^2-a-b+1=0\)
\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Giúp mình vs nha Mn! !!!
Bài 1 : các số thực dương a, b thõa mãn :
a2016 + b2016 = a 2017+b2017 = a 2018 + b 2018
Bài 2: Tính giá trị của biểu thức :
A= 2018.a2019+ 2017.b 2018
Bài 3: Tìm các số nguyên x, y thõa mãn
x>y> 1 và 2x +2y+1 chia hết cho xy
Cho a,b,c là các số thực dương thỏa mãn a+b+c=2018. CMR\(\frac{a^4+c^4}{a^3+c^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{a^4+b^4}{b^3+a^3}>=2018\)
\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)
\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)
\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)
BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM
Dấu "=" <=> a=b=c
Ủng hô va` kb với mình nhé ^^
cho a,b,c là các số nguyên dương thỏa mãn a^3+b^3+c^3=3abc
tính giá trị biểu thức A=(a^2018)/(b^2018)+(b^2018)/(c^2018)+(c^2018)/(a^2018)
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
thank . Mấy chỗ đó hiểu dc
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Mà a,b,c là các số nguyên dương
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{a^{2018}}=1+1+1=3\)
Cho a^3+b^3=c(3ab-c^2) và a+b+c=3 tính gt của biểu thức
A=672.(a^2018+b^2018+c^2018)+2
\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)
Mà a + b + c = 3 nên a = b = c = 1
Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)
Cho a,b là các số dương thỏa mãn a^2+b^2=1.
CMR a^2018+b^2018<1
Mọi người giúp mình với. Các bạn nhớ ghi cách làm ra nhé. ai nhanh mình tick cho nha