Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
OoO Kún Chảnh OoO
Xem chi tiết
Devil
22 tháng 2 2016 lúc 15:31

a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x

                            (3-2x)>0 suy ra|3-2x|=3-2x

ta có: 2-x+3-2x=2x+1 

        5-3x=2x+1

        5-1=2x+3x

        6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)

nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x

                                2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3

ta có:2-x+2x-3=2x+1

      -1+x=2x+1

      -1-1=2x-x

       -2=x(loại vì ko thuộc khả năng xét)

nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2

                       3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3

ta có:x-2+2x-3=2x+1

        3x-5=2x+1

       3x-2x=5+1

     x=6(chọn vì thuộc khả năng xét)

suy ra x=6

Devil
22 tháng 2 2016 lúc 15:37

c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)  

   \(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)

suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)

 ta có: 4(15k)-3(10k)+5(8k)=7

           60k-30k+40k=7

           70k=7 suy ra k=1/10

ta có:x=1/10.15=3/2

        y=1/10.10=1

     

danh anh
14 tháng 7 2017 lúc 21:15

tìm x biết : I x-2I + I3-2x I = 2x+1 

b) tìm x,y thuộc Z biết : xy+2x-y= 5

c) tìm x,y thuộc Z biết : 2x=3y; 4y=5z va 4x-3y + 5z = 7 

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 7

nhoc quay pha 22/02/2016 lúc 15:37

c)

Chi Khánh
Xem chi tiết
Đoàn Đức Hà
24 tháng 8 2021 lúc 16:33

Bài 4. 

\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)

Bài 3. 

\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)

\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)

\(\Leftrightarrow12\left|x-1\right|=36\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2020 lúc 18:50

\(\Leftrightarrow8x^2+2y^2-4xy-4x-2y< 2\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)+\left(4x^2-4x+1\right)< 4\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(y-1\right)^2+\left(2x-1\right)^2< 4\)

\(\Rightarrow\left(2x-1\right)^2< 4-\left(2x-y\right)^2-\left(y-1\right)^2< 4\)

\(\Leftrightarrow\left(2x-1\right)^2=1\) (do \(\left(2x-1\right)^2\) luôn là SCP lẻ)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow y^2-y< 1\Rightarrow\left(2y-1\right)^2< 5\)

\(\Rightarrow\left(2y-1\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

- Với \(x=1\Rightarrow y^2-3y+1< 0\Rightarrow\left(2y-3\right)^2< 5\)

\(\Rightarrow\left(2y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=2\\y=1\end{matrix}\right.\)

Đoàn Trần Thanh Ngân
Xem chi tiết