Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shonogeki No Soma
Xem chi tiết
Thiên An
24 tháng 7 2017 lúc 22:08

bạn tham khảo thêm cách này nha Shonogeki No Soma

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Đặt  \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)

pt đã cho đc viết lại thành

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)  (kí hiệu [..] mới đúng nha)

- TH1: a = -b hay  \(\left(x-1\right)^3=-x^3\)  \(\Leftrightarrow2x^3-3x^2+3x-1=0\)  \(\Leftrightarrow x=\frac{1}{2}\)  (Nhận)

- TH2: b = -c hay  \(\left(x+1\right)^3=-x^3\)  \(\Leftrightarrow2x^3+3x^2+3x+1=0\)  \(\Leftrightarrow x=-\frac{1}{2}\)  (Nhận)

- TH3: c = -a hay  \(\left(x+1\right)^3=-\left(x-1\right)^3\)  \(\Leftrightarrow x=0\)  (Loại)

KL:  \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

alibaba nguyễn
24 tháng 7 2017 lúc 15:31

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)

\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)

Thiên An
24 tháng 7 2017 lúc 15:33

còn cách khác ko alibaba nguyễn?

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
alibaba nguyễn
1 tháng 3 2018 lúc 13:42

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)

Đặt \(x^2=a\)

\(\Rightarrow4a^3+3a^2+3a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)

\(\Leftrightarrow4a=1\)

\(\Rightarrow4x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Phùng Ngọc Bảo Linh
27 tháng 2 2018 lúc 20:05

Bài lớp mấy mà khó vậy!Mình ko hiểu!

Nguyễn Hữu Hoàng Hải Anh
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Lê Minh Hưng
2 tháng 3 2019 lúc 21:25

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

Nguyễn Thị Ngọc Mai
Xem chi tiết
Phạm Hoàng Nam
Xem chi tiết
lewandoski
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết
Đức Lộc
Xem chi tiết
Nguyễn Khoa Nguyên
Xem chi tiết