\(1+{1\over\sqrt{2}}+...+{1\over\sqrt{35}}>10\)
Chứng minh :
\(x = {1 \over \sqrt{1}+\sqrt{2}}+{1 \over \sqrt{3}+\sqrt{4}}+{1 \over \sqrt{5}+\sqrt{6}}+...+{1 \over \sqrt{47}+\sqrt{48}}>3\)
\(b26 = [{\sqrt{x-1} \over 3\sqrt{x}-1}-{\sqrt{1} \over 3\sqrt{x}+1}{8\sqrt{x} \over 9x-1}]:[1-{3\sqrt{x}-2 \over 3\sqrt{x+1}}]\)
a) rút gọn
Chứng minh:
\({1 \over \sqrt{1.2020}} + {1 \over \sqrt{2.2019}} + {1 \over \sqrt{3.2018}} + . . . +{1 \over \sqrt{2020.1}} > {4020 \over \sqrt{2021}}\)
Hình như đề bài của bạn bị lỗi hệ thống rồi.
Hình như có gì đó sai sai thì phải?
Chứng minh???
\(P = ({1\ \over \sqrt{a}-2}-{1\ \over \sqrt{a}}):({\sqrt{a}-1\ \over \sqrt{a}-2}-{\sqrt{a}+2\ \over \sqrt{a}+1})\)
a, Tìm điều kiện xác định và rút gọn biểu thức P
b, Tìm giá trị của P biết \(a = 3+ 2\sqrt{2} \)
\(P = ({1\ \over \sqrt{a}-2}-{1\ \over \sqrt{a}}):({\sqrt{a}-1\ \over \sqrt{a}-2}-{\sqrt{a}+2\ \over \sqrt{a}+1})\)
a, Tìm điều kiện xác định và rút gọn biểu thức P
b, Tìm giá trị của P biết \(a = 3+ 2\sqrt{2} \)
\( {\sqrt{5} \over \sqrt{2}+1}+ \)\( {{14} \over 2\sqrt{2}-1} \)\(- {{6} \over 2-\sqrt{2}} \)
\( {x^2 - \sqrt{x} \over x+ \sqrt{x}+1}\) - \({2x - \sqrt{x} \over \sqrt x}\) +\(x = {2(x-1) \ \over\sqrt x-1}\)
\(A=({\sqrt{x}+2 \over x+2\sqrt{x}+1}-{\sqrt{x}-2\over x-1}):{\sqrt{x}\over\sqrt{x}+1}\)
a_ rút gọn
b_ tìm các giá trị của x để A nguyên
sqrt{a}/+2/over a+2sqrt{a} +1/ - sqrt{a}/-2/over a-1