Cho\(\frac{x}{y}\) =\(\frac{y}{z}\) =\(\frac{z}{x}\) Tính \(\frac{x^{3333}.y^{6666}}{z^{9999}}\)
a) cho x/y=y/z=z/x và x+y+z khác 0. Tính: \(\frac{x^{3333}.z^{6666}}{y^{9999}}\)
b) cho x2= yz, y2= xz và x+y+z khác 0 và x,y,z là số khác 0. Tính \(\frac{\left(x+y+z\right)^{999}}{x^{222}y^{333}z^{444}}\)
cho x/y = y/z = z/x và x+y+z khác 0. tính A = x^ 3333 nhân z ^ 6666/y ^ 9999
Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)
\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)
cho x/y=y/z=z/x và x+y+z khác 0
Tính x^3333 *z^6666/y^9999
Ta có: x/y=y/z=z/x áp dụng tính chất dãy tỉ số bằng nhau ta được:
x/y=y/z=z/x=(x+y+z)/(y+z+x)=1
Do đó: x/y=1 suy ra x=y
y/z=1 suy ra y=z
z/x=1 suy ra x=z
Nên x=y=z
Từ đó ta có: x^3333.z^6666/y^9999
=x^3333.x^6666/x^9999=1
cho x/y = y/z = z/x và x + y + z ≠ 0 . Tính x3333. z6666/ y9999
ta có :\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x+y+z\(\ne\)0
Áp dụng dãy tỉ số = nhau ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
Khi đó : \(\frac{x}{y}=1\Leftrightarrow x=y\)
\(\frac{y}{z}=1\Leftrightarrow y=z\)
\(\frac{z}{x}=1\Leftrightarrow x=z\)
Suy ra : x=y=z
Ta có : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{y^{3333}.y^{6666}}{y^{9999}}=\frac{y^{9999}}{y^{9999}}=1\)(vì x=y=z)
Vậy x3333.x6666/y9999=1 với thỏa mãn yêu cầu bài cho.
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\left(x+y+z\ne0\right)\Rightarrow x=y=z\Rightarrow\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)
Cho x+y+z=7. Biết \frac{x}{y+z} +\frac{y}{x+z} +\frac{z}{x+y} = 3. Tính \frac{x^{2}}{y+z} +\frac{y^{2}}{x+z} +\frac{z^{2}}{x+y}
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
cho x,y,z,t thuoc R* sao cho:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính P=\(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)
\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow x=y=z=t\)
\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính :\(Q=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
từ biểu thức đã cho , ta thấy các phân số bằng nhau .
Có 2 dạng bằng nhau :
- cũng mẫu và tử
- nhân hay chia mẫu và tử cho một số thì được phân số đã cho
Nếu ta lấy cách 1 , cũng mẫu và tử thì có :
y = z = t = x
Vậy có biểu thức phía dưới bằng :
1 + 1 + 1 + 1 = 4
Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4
còn theo cách kia tớ không biết giải
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính : P = \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)