Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUUYỄN NGỌC MINH
Xem chi tiết
Trịnh Quang Hùng
28 tháng 9 2015 lúc 19:39

Ta biến đơi VT được: \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\left(\sqrt{200-\left(x+1\right)^2}\right)\)

Để vế trái xác định thì \(\left(x+1\right)^2\le200\)    \(\left(1\right)\).

Mặt khác : \(VP\) chia hết 2 mà 2 chia hết cho 2 nên \(\left(\sqrt{200-\left(x+1\right)^2}\right)\) chia hết cho 2

  hay \(200-\left(x+1\right)^2\) chia hết cho 4. VÌ 200 chia hêt cho 4. Nên \(\left(x+1\right)^2\) chia hết cho 4   \(\left(2\right)\)

mà \(\left(x+1\right)^2\) là số chính phương  \(\left(3\right)\)   (x là số nguyên)  

Từ (1) ;(2) và (3) ta có: \(\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow\left(x+1\right)\in\left(0;2;-2\right)\)

Từ đó tính được y.

tick mình nha

Bách Bách
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 8 2021 lúc 17:05

Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)

Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)

Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)

Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)

Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)

Từ đó tính y nha

 

 

黃旭熙.
21 tháng 8 2021 lúc 17:33

Không biết là đúng không nữa cơ.

Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)

\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)

Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)

Tìm được y rồi thì tìm x nha.

Bùi Thị Tuyết Minh
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
25 tháng 9 2015 lúc 6:00

a, Ta có  \(199-x^2-2x=200-\left(x+1\right)^2\le200\to4y^2-2=\sqrt{199-x^2-2x}\le\sqrt{200}

Võ Thị Huyền Trinh
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Lê Thành An
Xem chi tiết
Nguyễn Văn Du
Xem chi tiết
Darlingg🥝
2 tháng 2 2020 lúc 10:22

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)

\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)

\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)

Ta có bảng GT:

x+y+315-1-5
x-y-151-5-1
x22-4-4
y-400-4

Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)

x,y nguyên dương là:

=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)

Khách vãng lai đã xóa
nguyễn thị hải yến
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 15:04

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

Akai Haruma
25 tháng 2 2023 lúc 15:14

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$