Chứng minh rằng tích 2 số chẵn liên tiếp thì chia hêt cho 8
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
a, chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
b, chứng minh rằng tích của 4 số chẵn liên tiếp thì chia hết cho 384
Chứng minh rằng tích hai số chẵn liên tiếp thì chia hết cho 8
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
VẬY TÍCH HAI SỐ TỰ NHIÊN LIÊN TIẾP CHIA HẾT CHO 8
trong 2 số chẵn liên tiếp,sẽ có 1 số chia hết cho 4 nên tích của chúng sẽ chia hết cho 8.
Chứng minh rằng: Tích của 3 số chẵn liên tiếp thì chia hết cho 8
gọi 3 số là:a ; a+2 ; a+4
ta có :
a.(a+2).(a+4)
vì a là số chẵn =>\(a⋮2\)=>\(\text{a.(a+2).(a+4) }⋮2\)
vì a ; a+2 ; a+4 là các số chẵn liên tiếp => có 1 số chia hết cho 4 => \(\text{a.(a+2).(a+4) }⋮4\)
vì \(\text{a.(a+2).(a+4) }⋮2;4\Rightarrow\text{a.(a+2).(a+4) }⋮2x4\Rightarrow\text{a.(a+2).(a+4) }⋮8\)
Gọi 3 số chẵn liên tiếp là 2a;2a+2;2a+4
ta có:2a.(2a+2).(2a+4)=(2a.2a.2a).(2+4)=8a.6 chia hết cho 8
vậy tích 3 số chẵn liên tiếp sẽ chia hết cho 8
-Chứng minh rằng: -Tích của 2 số chẵn liên tiếp thì chia hết cho 8.
-tích của 3 số chẵn liên tiếp thì chia hết cho 48.
-Tích của 4 số chẵn liên tiếp thì chia hết cho 384.
a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2
Theo đề bài, ta có: 2k(2k+2) chia hết cho 8
Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì 8 = 2.2.2)
Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức
=> 2k(2k+2) chia hết cho 8
Chứng minh rằng :
a) Tích của 2 số chẵn liên tiếp thì chia hết cho 8.
b) n5- n chia hết cho 10 .
c) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
Chứng minh rằng tích 2 số chẵn liên tiếp chia hết cho 8.
Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
TICK NHA BẠN!
chứng minh rằng tích 2 số chẵn liên tiếp chia hết cho 8