CMR: \(14< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}....\frac{200}{199}< 20\)
Cho A=\(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}CMR:14< A< 20\)
Cho \(A=\frac{2}{1}\times\frac{3}{2}\times\frac{6}{5}\times...\times\frac{200}{199}\)
CMR: A < 20
CMR
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\)
Có C^2 < 1/201
C = 1/200
=> C^2 = 1/400 < 1/201
=> C^2 < 1/201 (đpcm)
K nhé!
Ta rút gọn C = 1/200
=> C^2 = 1/400
Mà 1/400 < 1/201
=> C^2 < 1/201 (đpcm)
Ai k mk mk k lại !!
Ta rút gọn C = 1/200
=> C^2 = 1/400
Mà 1/400 < 1/201
=> C^2 < 1/201 (đpcm)
Cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\).CMR \(A^2\)<\(\frac{1}{201}\)
Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)
Áp dung vào bài toán ta được
\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)
\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)
Vậy \(A^2< \frac{1}{201}\)
Cho \(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.......\frac{200}{199}\)
CMR: 201<S2<400
Giải đúng và chi tiết mk **** cho
CM \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)
Chúc bạn học tốt !!!
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B
Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:
B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A
=> \(\frac{A}{B}\)\(=\frac{1}{200}\)
=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)
=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)
Bài 1 : Tính C= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n-1}{n!}\)
Bài 2 : CMR D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 3: Cho biểu thức P=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
a) CMR : P= \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giải bài toán trên trog trường hợp tổng quát
Bài 4 : CMR: \(\forall n\in Z\left(n\ne0;n\ne1\right)\) thì Q= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) không phải là số nguyên .
Bài 5 : CMR : S=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}< \frac{1}{2}\)
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
Tìm x
\(\frac{x-199}{6}+\frac{x-199}{12}+\frac{x-199}{20}+\frac{x-199}{30}+\frac{x-199}{42}=\frac{5}{14}\)\(\frac{5}{14}\)
Mình lỡ đánh nhầm 2 lần \(\frac{5}{14}\)nha :)) chỉ 1 lần thôi
\(\frac{x-199}{6}+\frac{x-199}{12}+\frac{x-199}{20}+\frac{x-199}{30}+\frac{x-199}{42}=\frac{5}{14}\)
\(\left(x-199\right)\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{5}{14}\)
\(\left(x-199\right)\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=\frac{5}{14}\)
\(\left(x-199\right)\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{5}{14}\right)\)
\(\left(x-199\right)\left(\frac{1}{2}-\frac{1}{7}\right)=\frac{5}{14}\)
\(\left(x-199\right).\frac{5}{14}=\frac{5}{14}\)
\(\Leftrightarrow x-199=1\)
\(\Leftrightarrow x=200\)