A = 2^0+2^1+...+2^2029
a=1/2015*2016+2/2016*2017+3/2017*2018+...1/2028*2029+1/2029*2030
tính nhanh nhé ai giải đương thì mình thank you nhe
minh nghi ban dang chep sai de bai
the de bai cua minh thi giai nhu sau
A=1/2015.2016+1/2016.2017+......+1/2029.2030
A=1/2015-1/2016+1/2016-1/2017+.....+1/2029-1/2030
A=1/2015-1/2030=3/818090
2029 - {[39 - ( 23 . 3 - 21 )2 : 3 + 20180
cần gấp
\(2029-\left\{\left[39-\left(2^3.3-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-\left(8.3-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-\left(24-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-3^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-9:3+1\right]\right\}\)
\(=2029-\left\{\left[39-3+1\right]\right\}\)
\(=2029-37\)
\(=2022\)
Đáp án sai rồi kìa Pé Mun, bằng 1992 chứ ? Sao lại lấy 2029 - 7 =)))?
\(cmr:A=1+2+2^2+....+2^{2029}chiahet\) cho 31
A = 1 + 2 + 22 +...........+ 22029
A = ( 1 + 2 + 22 + 23 + 24 ) +...........+( 22025 + 22026 + 22027 + 22028 + 220029)
A = 1(1 + 2 + 22 + 23 + 24) +............+ 22025( 1 + 2 + 22 + 23 + 24 )
A = 1 . 31 +.........+ 22025 . 31
A = 31( 1 + .......... + 22025)
Vì 31 chia hết cho 31 => 31( 1+...........+22025) chia hết cho 31
Hay A chia hết cho 21. ( Tính chất 1)
\(cmr:A=1+2+2^2+.....+2^{2029}\) chia het cho 31
\(A=1+2+2^2+....+2^{2029}\)
\(A=\left(1+2+2^2+2^3+2^4\right)+.....+\left(2^{2025}+2^{2026}+2^{2027}+2^{2028}+2^{2029}\right)\)
\(A=31.1+....+2^{2025}.31\)
\(A=31.\left(1+....+2^{2025}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
1, CMR \(a^2+b^2+3>ab+a+b\)
2, Tìm GTNN của biểu thức \(P=x^2+2y^2+2xy-6x-8y+2029\)
\(P=x^2+\left(2xy-6x\right)+2y^2-8y+2029\)
\(P=x^2+2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+2y^2-8y+2029\)
\(P=\left(x+y-3\right)^2-\left(y^2-6y+9\right)+2y^2-8y+2029\)
\(P=\left(x+y-3\right)^2+y^2-2y+1+2019\)
\(P=\left(x+y-3\right)^2+\left(y-1\right)^2+2019\) \(\ge2019\forall x,y\)
\(P=2019\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy Min P = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
1.\(\Leftrightarrow a^2+b^2-ab-a-b+3>0\)
\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+6>0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+4>0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+4>0\) ( luôn đúng )
Do đó suy ra đpcm
giải phương trình\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)
\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=2014\)
(1-2015).(2-2015)...(2029-2015).(2030-2015)
= (1-2015).(2-2015)....(2015-2015)....(2029-2015).(2030-2015)
= (1-2015).(2-2015)....0....(2029-2015).(2030-2015)
= 0
A=3x^4-x^3+12x^2+2x+2029 biết x^2+3=x
giúp mình với các bạn ơi
Tính:
25/16 - 7/20
29/12 - 2