Cho: x/z=z/y. Chứng minh rằng: x2+z2/y2+z2=x/y
Cho x / 2014 = y / 2015 = z / 1016 Chứng minh rằng 4(x - y) . (y - z) = (z - x)^2
Cho x / y = y / z Chứng minh rằng x^2 + y^2 / y^2 + x^2 = x / z
bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
cho x/y+z + y/z+x + z/x+y=1 . Chứng minh rằng x^2/y+z + y^2/z+x + z^2/x+y=0
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
Cho x/z=z/y. Chứng minh rằng: x^2+z^2/y^2+z^2=x/y
Ta có : x/z = z/y ( y,z khác 0 )
⇒ z^2 = xy
⇒ x^2+z^2/y^2+z^2 = x^2+xy/y^2+xy
= x(x + y) / y(y + x)
= x/y
Vậy x^2+z^2/y^2+z^2 = x/y
( đpcm )
Cho ba số x, y, z thỏa mãn y khác z và x+y khac z và z^2=2(x.z+y.z-xy)
Chứng minh rằng x^2 +(x-z)^2/y^2+(y-z)^2= x-z/y-z
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
L8 đã học hằng đẳng thức chưa e nhỉ?
jup mik với a, cho a/b=c/d Chứng minh rằng (a^2+ac)/(c^2-ac)=(b^2+bd)/(d^2-bd)
b,cho 3 số x, y, z thỏa mãn y khác z và x+y khác z và z^2 = 2(xz + yz - xy) chứng minh rằng (x^2 + (x-z)^2)/(y^2+(y-z)^2)= x-z/y-z
ai nhanh mk tik cho
Cho x/z=z/y. Chứng minh rằng (x^2+z^2)/(y^2+z^2)=x/y
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)
\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)
=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)
\(\frac{x}{z}=\frac{z}{y}\)
cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
áp dụng t/c dãy tỉ số = nhau
\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)
vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)
từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}(y2+z2x2+z2)=yx
\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2zx=yz⇒(zx)2=(yz)2
áp dụng t/c dãy tỉ số = nhau
\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}(1)(zx)2=(yz)2=(z2+y2)(x2+z2)
vì \left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}(2)zx=yz⇒yx=zz
từ (1) và (2) =>\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}(y2+z2x2+z2)=yx
Cho x,y,z>-1 thỏa mãn
\(x^3+y^3+z^3\ge x^2+y^2+z^2\)
Chứng minh rằng
\(x^5+y^5+z^5\ge x^2+y^2+z^2\)