Tìm a thuộc N biết a+81 là số chính phương
Câu 1:Tìm n thuộc N,biết n^2+2010 là số chính phương.
Câu 2: Tìm số chính phương có 4 chữ số, biết chữ số tận cùng là số nguyên tố, tổng các chữ số là số chính
Câu 3: tìm số có 4 cs biết số đò là số chính phương và lập phương của 1 số.
Câu 4Tìm a,b,c thuộc P,biết a^b+b^a=c.
Tìm a thuộc N để các số sau là chính phương
a2 + a + 1589
13a + 3
a(a+3)
a2 + 81
Tìm \(a\in N\) để các số sau là số chính phương :
a) a2 + a + 43
b) a2 + 81
a.
\(a^2+a+43=k^2\) (\(k\in N;k>a\))
\(\Leftrightarrow4a^2+4a+172=4k^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)
Pt ước số, bạn tự lập bảng
b.
\(a^2+81=k^2\)
\(\Leftrightarrow k^2-a^2=81\)
\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)
Bạn tự lập bảng ước số
bài 1 : tim x thuộc N* biết A = 11111111111...1-7777777....7 là số chính phương và 2x chữ số 1 và x chữ số 7
bài 2 :
Cmr : a 10n +72n -1 chia hết cho 81
b 1111111( 81 chữ số 1 ) chia hết cho 81
bài 3 : Biết a+b + c chia hết cho 7 . CMR số abc chia hết cho 7 thì a = b
bài 4 :Tìm một số biết 9 lần số đó bằng số đó viết thêm chữ số 0 vào giữa chữ số hàng chục và đơn vị
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
1)tìm số tự nhiên : 1ab9 là số chính phương
2)tìm số tự nhiên : 19ab3cd là số chính phương
3)tìm số n thuộc n nhỏ nhất : 2^8 +2^11 +2^n là số chính phương
4)tìm a,b biết 69396a3b chia hết cho 2007
5)tính A= 2/15 + 2/35 + 2/63 + 2/99 +..........+2/4024035
6/ cho a = 1+2+3+4+......+12345678 , tìm dư và thương của a cho 2016
bạn ra 1 lần nhiều thế này người ta ngại trả lời lắm
Bài 2 :Tìm n thuộc N
a)n^2+13 là số chính phương
b)n-13 và n+12 đều là số chính phương
c)n+41 và n+14 đều là số chính phương
Bài 3 : Tìm số tự nhiên x,y biết
a)x^2+3^y=3026
b)3^x+8=y^2
c)4x^2=3^y+1295
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
\(a^2+12=n^2\)
\(\Leftrightarrow n^2-a^2=12\)
\(\Leftrightarrow\left(n-a\right)\left(n+a\right)=12\)(1)
Có \(n-a+n+a=2n\)là số chẵn nên \(n-a,n+a\)cùng tính chẵn lẻ.
mà \(n-a\le n+a\)nên từ (1) suy ra
\(\hept{\begin{cases}n-a=2\\n+a=6\end{cases}}\Leftrightarrow\hept{\begin{cases}n=4\\a=2\end{cases}}\)
Vậy \(a=2\)thỏa mãn ycbt.