Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Soobin
Xem chi tiết
huy luong van
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

nguyen phi hung
Xem chi tiết
bạch thị hải hà
Xem chi tiết
Trang Jessica
Xem chi tiết
Hoàng Hương	Giang
Xem chi tiết
Trần Đại Nghĩa
13 tháng 8 2020 lúc 9:56

Không thể chứng minh \(16^5+2^{14}⋮33\) đơn giản là vì \(16^5+2^{14}⋮̸33,16^5+2^{14}\div33=32271.514515\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 8 2020 lúc 10:02

Xin phép sửa đề thành 165 + 215 ạ :)

Ta có 165 + 215 = ( 24 )5 + 215

                          = 220 + 215

                          = 215.25 + 215.1

                          = 215( 25 + 1 )

                          = 215.33 \(⋮\)33 ( đpcm )

Khách vãng lai đã xóa
Huỳnh Quang Sang
13 tháng 8 2020 lúc 10:04

165 + 214 = (24)5 + 214 = 220 + 214 = 214(26 + 1)=  214 . 65 \(⋮\)65 không chia hết cho 33 -> đề sai

Nếu sửa lại thì đề như vậy : Chứng minh rằng : 165 + 215 chia hết cho 33 thì mới chia hết được nhé

Khách vãng lai đã xóa
Nanah Quyen
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 20:00

a) 87 - 218 = ( 23 )7 - 218

                  = 221 - 218

                  = 218( 23 - 1 )

                  = 218.7

                  = 217.14 \(⋮\)14( đpcm )

b) 167 - 412 = ( 24 )7 - ( 22 )12

                    = 228 - 224

                    = 224( 24 - 1 )

                    = 224.15

                    = 223.30 \(⋮\)30( đpcm )

Mình chỉ làm được 1 cách thôi ;-;

Khách vãng lai đã xóa
SGK_LQM
Xem chi tiết
Trương  Tiền  Phương
20 tháng 7 2017 lúc 11:17

   Xét: 116 - 115 + 114 

= 114 . 112 - 114 . 11 + 114 

= 114 . ( 112 - 11 + 1 )  \(⋮\)11 ( vì 114 \(⋮\)11 )

Vậy: 116 - 115 + 114   \(⋮\)11 ( đpcm )

   Xét: 165 + 219 - 86

= ( 24 )5 + 219 - ( 23 )6

= 220 + 219 - 218

= 218 . 22 + 218 . 2 - 218 . 1

= 218 . ( 22 + 2 - 1 )

= 218 . 5

= 217 . 2 . 5

= 217 . 10 \(⋮\)10 ( vì 10 \(⋮\)10 )

Vậy:  165 + 219 - 86  \(⋮\)10  ( đpcm )

Nguyễn Thị Yến Vy
20 tháng 7 2017 lúc 10:52

165+219-86

=220+219-218=218(22+2-1

=218.5 chia hết cho 10

câu kia thì dễ rồi

SGK_LQM
20 tháng 7 2017 lúc 10:53

lam cau kia di