Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Đăng
Xem chi tiết
Huy Hoàng
Xem chi tiết
NGUYỄN THỊ PHƯƠNG THẢO
16 tháng 4 2020 lúc 10:36

tìm điều kiện của K để A chia hết cho 16 biết A=K ^4+2^ 3-16k^ 2-2k -15

Khách vãng lai đã xóa
Kiệt Nguyễn
16 tháng 4 2020 lúc 11:35

Ta có: \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)(1)

Vì x > 0 nên \(\left(1\right)\Leftrightarrow x^2=2x\left(x-y\right)+2y-x+2\)

\(\Leftrightarrow x^2-2x^2+2xy-2y+x=2\Leftrightarrow\left(1-x\right)\left(x-2y\right)=2\)

Do x, y là số nguyên nên ta có bảng sau:

Mà x, y dương nên có các cặp số nguyên (x; y) thỏa mãn là (2; 2) và (3; 2)

Khách vãng lai đã xóa
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:39

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:43

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

Nguyễn Mạnh Khang
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Anh Tuan Le Xuan
Xem chi tiết
Minh Thúy
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 5 2020 lúc 23:06

Bạn tham khảo sol ở đây nhé !

IMO ShortList 1998, number theory problem 1

Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )

Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!

Khách vãng lai đã xóa