giải phương trình \(x+1+\sqrt{2x+3}=\frac{8x^2+8x+11}{2\sqrt{2x+3}}\)
Giải phương trình :\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\)
Giải phương trình :
\(\sqrt{\frac{8x^3-1}{2x+3}}+\sqrt{2x+3}=\sqrt{4x^2+2x+1}+\sqrt{2x-1}\)
Giải phương trình : \(\left(x+1\right)\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\).
ĐKXĐ : \(x>-\frac{3}{2}\)
pt \(\Leftrightarrow2\left(x+1\right)\left(2x+3\right)=8x^2+18x+11\)
\(\Leftrightarrow2x^2+10x+6=8x^2+18x+11\)
\(\Leftrightarrow6x^2+8x+5=0\)
\(\Leftrightarrow6\left(x^2+\frac{4}{3}x+\frac{5}{6}\right)=0\)
\(\Leftrightarrow6\left(x+\frac{2}{3}\right)^2+\frac{7}{3}=0\) ( ***** )
Vậy pt vô nghiệm
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
Câu b còn 1 cách giải nữa:
Với \(x=0\) không phải nghiệm
Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)
Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)
Phương trình trở thành:
\(\sqrt{t^2+12}+t=6\)
\(\Leftrightarrow\sqrt{t^2+12}=6-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)
\(\Rightarrow t=2\)
\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)
\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)
\(\Rightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
Giải phương trình: \(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(\Leftrightarrow3\left(\sqrt{8x^2+3}-2\sqrt{2x^2-2x+1}\right)-8x+1=0\)
\(\Leftrightarrow\frac{3\left(8x-1\right)}{\sqrt{8x^2+1}+2\sqrt{2x^2-2x+1}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left[\frac{3}{\sqrt{8x^2+3}+2\sqrt{2x^2-2x+1}}-1\right]=0\)
<=> 8x-1=0
<=> x=\(\frac{1}{8}\)
GIẢI PHƯƠNG TRÌNH:
\(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)
giải phương trình
a) x - \(\sqrt{x-1}\) -3 = 0
b)\(\sqrt{4x^2+8x+4}\) = x - 3
c) 2x + 5 +\(2\sqrt{2x+5}\) = 13
Giai phương trình:
\(x+1+\sqrt{2x+3}=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}\)
ĐKXĐ: \(x>-\frac{3}{2}\)
\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)
Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)
\(\Rightarrow8x^2+18x+11=a^2+b^2\)
Khi đó, phương trình (1) trở thành:
\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)
\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)
Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!
HỌC TỐT!^_^
Giải phương trình
\(\sqrt{5-x}+\sqrt{x-3}=\frac{2x^2}{8x-16}\)
Txđ: \(x\in[3;5]\)
Áp dụng BĐT : \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)Với \(a,b\ge0\)(Chứng minh cái này dễ thôi, bạn bình phương 2 vế là ra nhé)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}\le\sqrt{2(5-x+x-3)}\)\(=2\)
Mặt khác:
\(\frac{2x^2}{8x-16}=\frac{x^2}{4\left(x-2\right)}=\frac{[\left(x-2\right)+2]^2}{4\left(x-2\right)}=\frac{\left(x-2\right)^2+4\left(x-2\right)+4}{4\left(x-2\right)}=\frac{x-2}{4}+\frac{1}{x-2}+1\)
\(\ge2\sqrt{\frac{x-2}{4}.\frac{1}{x-2}}+1=2\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}5-x=x-3\\\frac{x-2}{4}=\frac{1}{x-2}\end{cases}}\)
=> \(x=4\)(Thỏa mãn Đ/K)