CMR:trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.
=> Hiệu cuả 2 số đó chia hết cho 41
=> ĐPCM
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
trong n + 1 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho n
cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100
1.Chứng minh rằng trong 6 số tự nhiên bất kì luôn tồn tại 1 số chia hết cho 6 và vài số có tổng chia hết cho 6
2.Cho 21 số nguyên dương bất kì khác nhau không vượt quá 40 .Chứng minh ràng trong 21 số đó luôn tồn tại 2 số có tổng=41
Chứng minh rằng trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)
Và ta có \(n+2016-n=2015⋮2015\)
Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Quên, phải lấy \(n+2015-n=2015\) chứ.
Và không có số \(n+2016\), chỉ có \(n+2015\)là hết.