Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê văn quang trung
Xem chi tiết
Lê Thị Bích Tuyền
2 tháng 11 2015 lúc 15:11

Chứng minh : p + q chia hết cho 4
Từ bài suy ra p,q phải là 2 số lẻ liên tiếp nên p,q sẽ có dạng 4k + 1 và 4k + 3 \(\Rightarrow p+q\) chia hết cho 4
Vì p,q là số nguyên tố lớn hơn 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2
p = 3k + 1 \(\Rightarrow q=3k+3\)
Nên p + q chia hết cho 3
\(\Rightarrow\)p + q chia hết cho 12

Bùi Thị Thu Phương
Xem chi tiết
HOÀNG GIA KIÊN
Xem chi tiết
Trần Thị Ngọc Ánh
Xem chi tiết
Nguyễn Thị Hồng Nhung
Xem chi tiết
Trần Thị Bình
Xem chi tiết
Hoàng Nữ Linh Đan
Xem chi tiết
Selina
25 tháng 12 2015 lúc 22:04

vi q la so nguyen to >3 nen se co dang 3k+1 va 3k+2 (k thuoc N*)

neu q=3k+1 thi p=3k+3 nen p chia het cho 3 (loai)

khi q=3k+2 thi p=3k+4

q la so nguyen to >3 nen k la so le

ta co p+q=6(k+1) chia het cho 12

NGUYỄN KHÔI NGUYÊN
Xem chi tiết

 Để olm giúp em, em nhé! 

Vì q là số nguyên tố lớn hơn 3 nên q có dạng:

         q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)

hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)

Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)

Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4

Theo bài ra ta có:

p + q = 3n + 2 + 3n + 4

p + q= 6n + 6 (n là số tự nhiên lẻ)

p + q = 6.(n+1)

Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)

 

lê văn mạnh
Xem chi tiết