Cho x,y la so duong va x+y=1.Tim gia tri nho nhat cua bieu thuc P=2(x^4+y^4)+1/4xy
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)
Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)
=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Cho x,y la cac so thuc duong. Tim gia tri nho nhat cua bieu thuc:
\(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà
Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)
\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow\)x=y
Cho cac so thuc x , y thay doi thoa man x + y = 2 . Tim gia tri nho nhat cua bieu thuc P = ( x4 + 1 )(y4 + 1) + 2013
ap dung bunhiacopki
\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)
do do P>=4+2013=2017
= xảy ra <=>x=y=1
Cho x;y la hai so duong thay doi. Tim gia tri nho nhat cua bieu thuc:
S=(x+y)^2/x^2+y^2. + (x+y)^2/xy
Giai chi tiet giup mk nha!! Cam on!
cho 2 số thực duong x y thỏa mãn 4/x^2 +5/y^2>=9 . tim gia tri nho nhat cua bieu thuc Q=2x^2+6/x^2+3y^2+8/y^2
tim gia tri nho nhat cua bieu thuc P=\(\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) trong do x,y la cac so duong thoa man \(x^2+y^2=1\)
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3
hai so nguyen duong x,y co tong la 51
a tim gia tri lon nhat cua x.y
b tim gia tri nho nhat cua tich x,y, biet rang x va y deu lon hon 1