chứng minh 3^5371+57^2016+92^2017 chia hết cho 10
chứng minh rằng : 3 mũ 5371 + 57 mũ 2016 + 92 mũ 2017 chia hết cho 10
Đặt A = 35371 + 572016 + 922017
= 31342.4 . 33 + 574.504 + 924.504.92
= (34)1342.(..7) + (574)504 + (924)504.(...2)
= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)
= (...1).(...7) + (...1) + (...6).(...2)
= (...7) + (...1) + (...2)
= (...0) \(⋮\)10
Vậy \(A⋮\)10 (đpcm)
a,tìm số tự nhiên n sao cho 5.n+3chia hết cho n+2
b,chứng minh rằng 3 ^5371 + 57^2016+92^2017 chia hết cho 10
nhanh hộ mình với
a)
\(5n+3⋮n+2\)
\(5n+10-7⋮n+2\)
\(5\left(n+2\right)-7⋮n+2\)
mà \(5\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng :
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
Vậy x = { -9; -3; -1; 5 }
Đề ra là số tự nhiên mà không phải số nguyên âm làm đúng rồi bỏ nguyên âm đi là ok
Chứng Minh Rằng : 10 mũ 2017 + 2016 ko chia hết cho 3
số trên sẽ có tổng các chữ số bằng 1
=>số 102017+2016 ko chia hết cho 3
10^2017 có tổng các chữ số bằng 1
2016 có tổng các chữ số bằng 9
Mà 1+9=10 không chia hết cho 3 nên 10^2017+ không chia hết cho 3
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
Chứng minh 2016^3-2016 chia hết cho 2017
\(2016^3-2016=2016.\left(2016^2-1\right)\)
\(=2016.\left(2016-1\right).\left(2016+1\right)\)
\(=2017.2016.2015⋮2017\) ( đpcm )
20163-2016=2016(20162-1)=2016.(2016-1)(2016+1)=2015.2016.2017 chia hết cho 2017
\(2016^3-2016\)
\(=2016\left(2016^2-1\right)\)
\(=2016.\left(2016-1\right)\left(2016+1\right)\)
\(=2015.2016.2017⋮2017\)
\(\Rightarrowđpcm\)
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi
a) Chứng minh 10^2017 + 8 chia hết cho 72
b) Thực hiện phép tính : 125^3 . 7^5 - 175^5 : 5 phần 2016^2017
a, 10^2017+8 = 100....000+8 (2017 chữ số 0) = 100....008 (2016 chữ số 8) chia hết cho 8
Có : tổng các chữ số của 10^2017+8 = 1+0+0+....+0+0+8 = 9 chia hết cho 9 => 10^2017+8 chia hết cho 9
=> 10^2017+8 chia hết cho 72 ( vì 8 và 9 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Cho P=\(1^{2017}+2^{2017}+3^{2017}+...+2016^{2017}\), Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
\(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
\(=2016.504\left(mod2^4\right)\)
\(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
\(a^n+b^n\) chia hết cho a+b với n lẻ
áp dụng cái trên là đc nhé bạn
cho A= 7+ 7^2+ 7^3+...+7^2016 chứng minh A chia hết cho 8,A chia hết cho 57
A=7+72+73+...+72016
=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+8)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8 (đpcm)
A=7+72+73+...+72016
=(7+72+73)+...+(72014+72015+72016)
=7.(1+7+72)+...+72014.(1+7+72)
=7.57+...+72014.57
=57.(7+...+72014) chia hết cho 57 (đpcm)