Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thom nguyen
Xem chi tiết
Không quan tâm
20 tháng 1 2016 lúc 8:40

1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2

Minh Hiền
20 tháng 1 2016 lúc 8:41

1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2

=> tích 2 số đó chia hết cho 2.

2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;

trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3

Mà (2;3) = 1

=> Tích 3 số đó chia hết cho 2.3 = 6.

Phùng Gia Bảo
20 tháng 1 2016 lúc 8:41

1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2

2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6

LovE _ Khánh Ly_ LovE
Xem chi tiết
♥ℒℴѵe♥
27 tháng 7 2017 lúc 13:54

a)Ta có:a.(a+1)chia hết cho 2

Giả sử a là một số chẵn

=>a+1 là một số lẻ

Vì a.(a+1)là một số chẵn =>Tích 2 số tự nhiên liên tiếp chia hết cho 2

b)tương tự

Nguyễn Bảo Châu
Xem chi tiết
Sherlockichi Kazukosho
5 tháng 10 2016 lúc 5:50


Chia n thành  2 loại : Số chẵn (2k) ; Số lẻ (2k + 1) 

Rồi thế vô 

Nguyễn Nguyệt Thu
5 tháng 10 2016 lúc 5:50

tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
 

Nguyễn Thành Khoa
16 tháng 12 2017 lúc 19:42

i don't know

Nguyễn Hồ Đan Linh
Xem chi tiết
Hồng Hạnh
Xem chi tiết
Ngô Thúy Hà
31 tháng 10 2017 lúc 21:47

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

Shunya Shiraishi
31 tháng 10 2017 lúc 21:56

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

Không Tên
13 tháng 10 2018 lúc 19:19

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

Nếu:  a = 2k thì chia hết cho 2  Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

Lê Hoàng Băng Nhi
Xem chi tiết
Võ Thạch Đức Tín 1
2 tháng 10 2016 lúc 8:45

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

Không Tên
13 tháng 10 2018 lúc 19:20

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

Nếu:  a = 2k thì chia hết cho 2  Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

Hà Đức Hùng
Xem chi tiết
Lê Quang Hưng
18 tháng 12 2016 lúc 15:26
a, Vì hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn và một số lẻ mà số lẻ nhân với số chẵn sẽ được một số chia hết cho 2 => Tích của hai số tự nhiên liên tiếp chia hết cho 2(ĐPCM) b, gọi 3 số tự nhiên liên tiếp là a , a+1, a+2 .Ta có a.(a+1).(a+2) chia hết cho 3 => 3a ( 1+2+3 ) chia hết cho 3 => 3a . 6 chia hết cho 3 Vì 3a chia hết cho 3 6 chia hết cho 3 nên 3a + 6 chia hết cho 3 Vậy tích 3 số tự nhiên liên tiếp chia hết cho 3(ĐPCM) ĐPCM là điều phải chứng minh nhé! Chúc bạn học tốt ^_^
Phạm Anh Thái
15 tháng 10 2021 lúc 21:04

a) Gọi 2 số tự nhiên liên tiếp là a; a + 1

Ta có:

\(a.\left(a+1\right)\)

\(=a.a+a\)

\(2a+a\)

\(\Rightarrow a.\left(a+1\right)⋮2\)

Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2

b) Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2

Ta có

\(a.\left(a+1\right).\left(a+2\right)\)

\(=\left(2a+a\right).\left(a+2\right)\)

\(=3a+\left(a+2\right)\)

\(~HT~\)

Khách vãng lai đã xóa
Hạnh
Xem chi tiết
Conan Edogawa
10 tháng 7 2015 lúc 17:32

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2 

Ta có: 

Nếu n có dạng 3k thì n.(n+1).(n+2) 

= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)

Nếu n có dạng 3k+1 thì n.(n+1).(n+2) 

= (3k+1).(3k+1+1).(3k+2+1)

= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3) 

Nếu n có dạng 3k+2 thì n.(n+1).(n+2) 

= (3k+2).(3k+2+1).(3k+2+2)

= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3) 

 

Le Thi Khanh Huyen
10 tháng 7 2015 lúc 17:54

Cứ li ke ủng hộ chú ấy mỏi tay :D

nguyễn thu hiền
Xem chi tiết