Tìm GTNN của: \(2x+3\)
Tìm GTLN của: \(-8x+2\)
Tìm GTNN hoặc GTLN của các biểu thức sau
B=4x^2+8x
C=-2x^2+8x-15
B = 4x2 + 8x
= 4( x2 + 2x + 1 ) - 4
= 4( x + 1 )2 - 4
4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinB = -4 <=> x = -1
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
B=2X^2+2XY+5Y^2-8X-22Y.
Tìm GTNN hoặc GTLN của biểu thức B
Tìm GTLN hoặc GTNN của biểu thức
B = 2x2 + 8x + 1
\(B=2x^2+8x+1\)
\(=2\times\left(x^2+2\times x\times2+2^2-2^2+\frac{1}{2}\right)\)
\(=2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\)
\(\left(x+2\right)^2\ge0\)
\(\left(x+2\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)
\(2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\ge-7\)
Vậy Min B = -7 khi x = -2
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
tìm gtln, gtnn của D=\(\dfrac{8x+3}{4x^2+9}\)
Bài toán này cho kết quả rất xấu, vì vậy nằm ngoài khả năng của học sinh lớp 8
Muốn giải thì phải sử dụng kĩ thuật miền giá trị, cần kiến thức delta của lớp 9
Tìm GTLN của biểu thức:
A=-x^2+6x-15
B=-2x^2+8x-15
C=-3^2+2x-1
D=-5x^2-25x+49
Tìm GTNN của biểu thức:
A=x^2-4x+7
B=x^2+8x
C=2x^2+4x+15
D=3x^2-2x-1
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
1.Tìm GTNN
a.A=1/-x^2+2x-2
b.B=2/-4x^2+8x-5
2.Tìm GTLN
a.A=3/2x^2+2x+3
b.B=5/3x^2+4x+15
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
Tìm GTNN hoặc GTLN của biểu thức sau:
H= 2020 / x^2 +2x+6
I= 15/ 6x- x^2 -14
M= (8x+3)/ (4x^2 +1)
có ai làm NY tui hem