Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ trần
Xem chi tiết
Le Nguyen Thi Nhu Ngoc
Xem chi tiết
Thanh Tùng DZ
23 tháng 12 2017 lúc 20:07

à, bổ sung thêm Phần cuối

A chia hết cho 120 

Vậy tổng trên chia hết cho 120

Thanh Tùng DZ
23 tháng 12 2017 lúc 20:06

đặt A = 3 + 32 + 33 + 34 + .... + 32012

A = ( 3 + 32 + 33 + 34 ) + ... + ( 32009 + 32010 + 32011 + 32012 )

A = 120 + ... + 32008 . ( 3 + 32 + 33 + 34 )

A = 120 + ... + 32008 . 120

A = 120 . ( 1 + ... + 32008 )

Le Nguyen Thi Nhu Ngoc
23 tháng 12 2017 lúc 20:20

thank you very much SKT_NTT

Lại Trí Dũng
Xem chi tiết
le thi huyen tran
Xem chi tiết
le thi huyen tran
2 tháng 7 2016 lúc 16:14

5 mu 6 chia 5 mu 3 cong 3 mu 2 3 mu3 tru 3 mu 4 nhan 3

Đỗ Gia Bảo Linh
Xem chi tiết
huy phạm gia
28 tháng 9 2021 lúc 20:50

= 3^101-1 nhé

Khách vãng lai đã xóa
huy phạm gia
28 tháng 9 2021 lúc 20:54

nhầm nha

Khách vãng lai đã xóa
Phương Linh Nguyễn
28 tháng 9 2021 lúc 21:13

f= 1+ 3 + 3 mũ 1 +....+ 3 mũ 100

3F =3+ 3 mũ 2 + 3 mũ 3+.....+ 3 mũ 101

2F 3 mũ 101 - 1 suy ra F= ( 3 mũ 101 -1) : 2=

đáp án bạn tự tính nhé

Khách vãng lai đã xóa
Nguyễn Thanh Bình
Xem chi tiết
Lê Yên Hạnh
24 tháng 10 2016 lúc 15:39

\(1+^2+4^3+......+4^{10}+4^{11}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5

\(7+7^2+7^3+.....+7^{102}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8

Trần Quỳnh Mai
24 tháng 10 2016 lúc 20:12

a, \(1+4+4^2+...+4^{11}\)

Đặt : \(S=1+4+4^2+...+4^{11}\)

Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị

=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )

Vậy ta có số nhóm là :

12 : 2 = 6 ( nhóm ) :

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )

\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)

\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)

\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)

Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)

---------

Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :

12 : 3 = 4 ( nhóm )

\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )

\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)

\(\Rightarrow S=1.21+...+4^9.21\)

\(\Rightarrow S=\left(1+...+4^9\right).21\)

Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)

b, \(7+7^2+7^3+...+7^{102}\)

Đặt : \(M=7+7^2+7^3+...+7^{102}\)

Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị

=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )

Vậy có tất cả số nhóm là :

102 : 2 = 51 ( nhóm )

\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)

\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)

\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)

\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)

Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)

Truong hoang ngan
Xem chi tiết
nguyen hoai nam
Xem chi tiết
nguyen hoai nam
18 tháng 2 2020 lúc 16:56

ai lam day du dau tien minh se k cho nha

Khách vãng lai đã xóa
nguyen hoai nam
18 tháng 2 2020 lúc 16:57

minh can gap lam

Khách vãng lai đã xóa
.
18 tháng 2 2020 lúc 17:06

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).

Khách vãng lai đã xóa
Nguyễn Khánh Vy
Xem chi tiết
BLACK CAT
25 tháng 10 2018 lúc 16:50

Bài 4:

Ta có:

M=1+7+72+...+781

M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)

M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)

M=400+74.400+...+778.400

M=400.(1+74+...+778)

\(\Rightarrow\)M=......0

Vậy chữ số tận cùng của M là chữ số 0

Bài 5:

a)Ta có:

M=1+2+22+...+2206

M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)

M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)

M=7+23.7+...+2204.7

M=7.(1+23+...+2204)\(⋮\)7

Vậy M chia hết cho 7

c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:

Ta có:

      M=1+2+22+...+2206

     2M=2+22+23+...+2207

 2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)

       M=2+22+23+...+2207-1-2-22-...-2206

\(\Rightarrow\)M=2207-1

M+1=2207-1+1

M+1=2207

Ta có:

M+1=2x

2x=M+1

2x=2207

x=2207:2

x=\(\frac{2^{207}}{2}\)

Bài 6:

Ta có:

A=(1+3+32)+(33+34+35)+...+(357+358+359)

A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)

A=13+33.13+...+357.13

A=13.(1+33+..+357)\(⋮\)13

Vậy A chia hết cho 13

mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha