Chứng minh A< 1. Biết
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\)
a, Chứng minh
\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, Áp dụng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}......+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
Xét phân thức phụ sau:
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay vào ta được:
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Đặt biểu thức đã cho là A
Tổng quát ta có: Với \(a\inℕ^∗\)ta có:
\(\frac{1}{\left(a+1\right)\sqrt{a}+a.\sqrt{a+1}}=\frac{\left(a+1\right)-a}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}\)
\(=\frac{\left(\sqrt{a+1}-\sqrt{a}\right)\left(\sqrt{a+1}+\sqrt{a}\right)}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}\)
\(=\frac{\sqrt{a+1}}{\sqrt{a}.\sqrt{a+1}}-\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}\)
Áp dụng kết quả trên ta có:
Với \(n=1\)\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Với \(n=2\)\(\Rightarrow\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
Với \(n=3\)\(\Rightarrow\frac{1}{4\sqrt{3}+3\sqrt{4}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\)
.....................
Với \(n=399\)\(\Rightarrow\frac{1}{400\sqrt{399}+399\sqrt{400}}=\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+......+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
chứng minh rằng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với \(n\inℕ^∗\)\
Áp dụng tính tổng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Vậy S = 19/20
a, Cho a + b + c =0 chứng minh:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
b, Tính
\(A=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{399^2}+\frac{1}{400^2}}\)
Mình giúp phần a thôi, phần b chir là áp dụng không có gì khó cả.
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\left(đpcm\right)\)
b, \(A=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{399^2}+\frac{1}{400^2}}\)
\(A=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{399^2}+\frac{1}{\left(-400\right)^2}}\)
có 1 + 1 - 2 = 1 + 2 - 3 = ... + 1 + 399 - 400 = 0
nên theo câu a ta có :
\(A=\left|1+\frac{1}{1}-\frac{1}{2}\right|+\left|1+\frac{1}{2}-\frac{1}{3}\right|+...+\left|1+\frac{1}{399}-\frac{1}{400}\right|\)
A = 1 + 1 -1/2 + 1 + 1/2 - 1/3 + 1 + 1/3 - 1/4 + ... + 1 + 1/399 - 1/400
= 400 1/400
= 159999/400
Bạn ơi cho mình hỏi áp dụng như lào vậy???
Em nào thích làm thì làm nhé
Chứng minh A > 1
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}\) \(+\frac{1}{2\sqrt{3}+3\sqrt{2}}\)\(+\frac{1}{3\sqrt{4}+4\sqrt{3}}\)\(+\frac{1}{400\sqrt{401}+401\sqrt{400}}\)
Ta có:
\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\text{ Vì thế, }A=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...-\frac{1}{\sqrt{401}}< 1.\)
chịu rồi
Chứng minh rằng
A= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{400}}< 38\)
Chứng minh:
\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{400}}< 38\)
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\)+....+\(\dfrac{1}{400\sqrt{399}+399\sqrt{400}}\)
Ta có công thức tổng quát là \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Vậy \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{400\sqrt{399}+399\sqrt{400}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{399}}-\dfrac{1}{\sqrt{400}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{400}}=1-\dfrac{1}{20}=\dfrac{19}{20}\)
a) Cho \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{25}}\)
Chứng minh : 7 < A < 8
b) Chứng minh : \(5\sqrt{2}< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{50}}< 10\sqrt{2}\)
a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)
áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)
(so sánh bình phương 2 số sẽ ra nha)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
áp dụng công thức cho biểu thức A ta CM được
A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)
=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)
từ (1) và (2) => ĐPCM
b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)
và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)
từ (1) và (2)=>ĐPCM
(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)
MỜI BẠN THAM KHẢO