Cho \(A=\dfrac{10^{101}-1}{10^{102}-1}\) và \(B=\dfrac{10^{100}+1}{10^{101}+1}\)
So sánh A và B
Cho \(A=\dfrac{10^{101}-1}{10^{102}-1}\) và \(B=\dfrac{10^{100}+1}{10^{101}+1}\)
So sánh A và B
Ta có:
10A=10^102-10/10^102-1
10A=1-9/10^102-1
10B=10^101+10/10^101+1
10B=1+9/10^101+1
suy ra 10B>10A
Vậy B>A
SO SÁNH :52017 và 251008
Cho A=10101-1 /10102-1;B=10100+1/10101+1.SO SÁNH A và B
ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)
Ta có:
\(5^{2017}>5^{2016}=\text{[}5^2\text{]}^{1008}=25^{1008}\)
Suy ra: 52017 > 251008
Ta có:
\(1-A=1-\frac{10^{101}-1}{10^{102}-1}=\frac{10^{102}-1-\text{[}10^{101}-1\text{]}}{10^{102}-1}=\frac{10^{102}-1-10^{101}+1}{10^{102}-1}\)\(=\frac{10^{102}-10^{101}}{10^{102}-1}=\frac{10^{101}\left[10-1\right]}{10^{101}\text{[}10-\frac{1}{10^{101}}\text{]}}=\frac{10-1}{10-\frac{1}{10^{101}}}=\frac{9}{10-\frac{1}{10^{101}}}\)
\(1-B=1-\frac{10^{100}+1}{10^{101}+1}=\frac{10^{101}+1-\left[10^{100}+1\right]}{10^{101}+1}=\frac{10^{101}+1-10^{100}-1}{10^{100}+1}\)
\(=\frac{10^{101}-10^{100}}{10^{101}+1}=\frac{10^{100}\left[10-1\right]}{10^{100}\text{[}10+\frac{1}{10^{100}}\text{]}}=\frac{10-1}{10+\frac{1}{10^{100}}}=\frac{9}{10+\frac{1}{10^{100}}}\)
Vì \(\frac{9}{10-\frac{1}{10^{101}}}>\frac{9}{10+\frac{1}{10^{100}}}\Rightarrow A< B\)
cho A=\(\frac{10^{101-1}}{10^{102-1}}\)và B=\(\frac{10^{100+1}}{10^{101+1}}\)
so sánh A và B
$\frac{10^{101-1}}{10^{102-1}}$ và $\frac{10^{100+1}}{10^{101+1}}$
= $\frac{10^{100}}{10^{101}}$ và $\frac{10^{101}}{10^{102}}$
Mà $\frac{10^{100}}{10^{101}}$ < $\frac{10^{101}}{10^{102}}$
=> $\frac{10^{101-1}}{10^{102-1}}$ < $\frac{10^{100+1}}{10^{101+1}}$
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
So sánh:A=\(\dfrac{10^{100}+1}{10^{99} +1}\) và B=\(\dfrac{10^{101}+1}{10^{100}+1}\)
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)
hay 1/10.A>1/10.B
=>A>B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)
hay 1/10.A<1/10.B
=>A<B
Đáp án dưới mới đúng nhé
vừa mình làm nhầm
So sánh A và B, biết:
A=(10100+1) : (10101+1)
B=(10101+1) : (10102+1)
Các bạn giải giúp mình, cảm ơn nhiều!
B=(10101+1):(10102+1)<(10101+1+9):(10102 +1+9)=(10101+10):(10102+10)=[10.(10100+1]:[10.(10101+)]
=(10100+1):(10101+1)=A
=>A>B
So sánh
a, A= 10^11-1/10^12-1 và B= 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
c, M = 101^102+1/101^103+1 và N = 101^103+1/101^104+1
d, C= 1/31+1/32+...+1/60 và 4/5
Cho S = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
So sánh: a, S và \(\dfrac{1}{2}\)
b, S và 1
so sánh :
A = \(\dfrac{10^{99}+1}{10^{100}+1}\)
B = \(\dfrac{10^{100}+1}{10^{101}+1}\)
\(A=\dfrac{10^{99}+1}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
\(B< A\)
Ta có : \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10.\left(10^{99}+1\right)}{10.\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
Vậy \(B< A\)