Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thơ Nụ =))
Xem chi tiết
Phạm Lê Nam Bình
Xem chi tiết
Nguyễn Linh Chi
9 tháng 10 2019 lúc 9:29

Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

tep.
Xem chi tiết
Xyz OLM
24 tháng 7 2021 lúc 11:27

Ta có a3 + b3 = 2(c3 - 8d3

<=> a3 + b3 = 2c3 - 16d3

<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3\(⋮3\)(1) 

Xét hiệu a3 + b3 + c3  + d3 - (a + b + c + d)

= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)

= (a - 1)a(a + 1)  + (b  - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp) 

=>  a3 + b3 + c3  + d3 - (a + b + c + d) \(⋮\)3 (2) 

Từ (1) và (2) => a + b + c + d \(⋮3\)

Khách vãng lai đã xóa
Phạm Lê Nam Bình
Xem chi tiết
Diệu Linh
8 tháng 10 2019 lúc 20:08

đề là sao vậy ? kiểm tra lại hộ

Nguyên
Xem chi tiết
Phong Linh
2 tháng 9 2018 lúc 21:51

Ta có : \(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)

z = \(\sqrt{z^2}\le\frac{z^2+1}{2}\)

=> x + y + z \(\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=\frac{ }{ }\)

Nguyên
31 tháng 7 2017 lúc 18:23

\(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)

\(z=\sqrt{z^2}\le\frac{z^2+1}{2}\)

\(\Rightarrow x+y+z\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=2+xy\)

Lê Đình Hoàng Quân
27 tháng 5 2020 lúc 23:24

các bạn viết rõ ràng cho mình hiểu với

Khách vãng lai đã xóa
Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

Hà Trần Thu
Xem chi tiết
Phạm Phương Uyên
Xem chi tiết
전정국
Xem chi tiết