giải hệ \(\hept{\begin{cases}4x^2+4y^2+Z^2+8xy-2xz-2yz=12\\4x^2+4y^2+2yz-2xz-8xy=-4\end{cases}}\)
Giải hệ pt
a\(\hept{\begin{cases}xy+xz=8\\yz+xy=9\\xz+yz=-7\end{cases}}\)
b,\(\hept{\begin{cases}x^2+y^2=2xy\\y^2+z^2=2yz\\z^2+x^2=2xz\end{cases}}\)
Ai làm tích đúng
cho hpt
\(\hept{\begin{cases}x^2+2yz=x\\y^2+2xz=y\\z^2+2xy=z\end{cases}}\)
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2-4xy=5\\4xy\left(x+2y\right)+5\left(x+2y\right)=1\end{cases}}\)
Đặt \(\hept{\begin{cases}x+2y=a\\4xy=b\end{cases}}\)
Ta thu được hệ \(\hept{\begin{cases}a^2-b=5\\ab+5a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=a^2-5\\a\left(a^2-5\right)+5a=1\end{cases}}\)
Giải pt 2 tìm đc a -> b -> dễ
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
\(\hept{\begin{cases}3x^2+2y+1=2z\left(x+2\right)\\3y^2+2z+1=2x\left(y+2\right)\\3z^2+2x+1=2y\left(z+2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+2y+1=2xz+4z\\3y^2+2z+1=2xy+4x\\3z^2+2x+1=2yz+4y\end{cases}}}\)
Cộng 3 vế vào rồi chuyển vế ta được
\(2x^2+2y^2+2z^2-2xy-2yz-2zx+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2 +\left(z-x\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Dễ thấy VP > 0
Dấu "=" khi x = y = z = -1