\(\frac{3^6\times45^4-15^3\times3^9}{27^4\times25^3+45^6}\)
\(\frac{3^6\times45^5-15^{13}\times5^{-9}}{27^4\times25^3+45^6}\)
\(\frac{3^6.45^5-15^{13}.5^{-9}}{27^4.25^3+45^6}=\frac{3^6.\left(3^2.5\right)^5-\left(3.5\right)^{13}.5^{-9}}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}=\frac{3^{16}.5^5-3^{13}.5^4}{3^{12}.5^6+3^{12}.5^6}\)
\(\frac{3^{13}.5^4\left(3^3.5-1\right)}{2.3^{12}.5^6}=\frac{3.44}{2.5^2}=\frac{3.22}{5^2}=\frac{66}{25}\)
\(\frac{3^6\times45^4-15^3\div5^9}{27^4\times25^3+45^6}\)
TÍNH :
\(\frac{3^6\times45^4-15^3\times5^{-9}}{27^4\times25^3+45^6}\)
\(a,\frac{3^6\times45^4-13^{15}\times5^{-9}}{27^4\times25^3+45^6}\)
\(b,\frac{\left(\frac{2}{5}\right)^7\times5^7+\left(\frac{9}{4}\right)^3\div\left(\frac{3}{16}\right)^3}{2^7\times5^2+512}\)
\(\frac{3^6\times45^4-15^3\div5^9}{27^4\div23^5+45^6}\)
Tính nhanh:\(\frac{1\times2\times3+2\times4\times6+3\times6\times9+4\times8\times12+5\times10\times15}{1\times3\times5+2\times6\times10+3\times9\times15+4\times12\times20+5\times15\times25}-\frac{1+2+3+2+4+6+3+6+9+4+8+12+5+10+15}{1+3+5+2+6+10+3+9+15+4+12+20+5+15+25}\)
Bài 1:
a, T = \(\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
b, A = \(\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
a) \(T=\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
\(=\frac{\left(3^2\right)^{14}\times25^6\times\left(2^3\right)^7}{\left(2\times3^2\right)^{12}\times\left(25^2\right)^3\times\left(3\times2^3\right)^3}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{12}\times3^{24}\times25^6\times3^3\times2^9}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{\left(2^{12}\times2^9\right)\times\left(3^{24}\times3^3\right)\times25^6}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{21}\times3^{27}\times25^6}=3\)
b) \(A=\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
\(=\frac{5\times\left(2^2\right)^{15}\times\left(3^2\right)^9-2^2\times3^{20}\times\left(2^3\right)^9}{5\times2^9\times\left(2\times3\right)^{19}-7\times2^{29}\times\left(3^3\right)^6}\)
\(=\frac{5\times2^{30}\times3^{18}-2^2\times3^{20}\times2^{27}}{5\times2^9\times2^{19}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{5\times2^{30}\times3^{18}-2^{29}\times3^{20}}{5\times2^{28}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{2^{29}\times3^{18}\times\left(5\times2-3^2\right)}{2^{28}\times3^{18}\times\left(5\times3-7\times2\right)}\)
\(=\frac{2\times\left(10-9\right)}{15-14}=\frac{2\times1}{1}=2\)
Tính nhanh : \(\frac{1}{8}\div12,5\%+\left(\frac{1\times2\times3+6\times4\times2}{5\times3\times1+5\times15\times25}+\frac{1}{2}\div50\%\right)-\left(\frac{1}{16}\div6,25\%+\frac{3+2+1+2+4+6}{1+3+5+25+15+5}\right)-\frac{1}{4}\div25\%\)
\(\frac{1}{8}=12,5\%\) ; \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\)
Thay vào trên mà tính.
= \(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)
a.\(\frac{7^3\times5^8}{49\times25^4}\)
b.\(\frac{3^9\times25\times5^3}{15\times625\times3^8}\)
c.\(\frac{2^{50}\times3^{61}+2^{90}\times3^{16}}{2^{51}\times3^{61}+2^{91}\times3^{16}}\)
d.\((\frac{2}{5}-\frac{1}{2})^2+(\frac{1}{2}+\frac{3}{5})^2\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{3.5.5^4.3^8}=\frac{3^9.5^5}{3^9.5^5}=1\)
c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2\)
\(=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2\)
\(=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=\frac{61}{50}\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=\frac{7^3.5^8}{7^2.5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{5.3.5^4.3^8}=\frac{3^9.5^5}{5^5.3^9}=1\)
c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(-\frac{1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=1,22\)