Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Triệu Yến Nhi
Xem chi tiết
Trần Thị Loan
22 tháng 6 2015 lúc 15:09

Gọi 2 số đó là u và v

Viết u = ax.by.cz.... (a;b;c là thừa số nguyên tố)

v = pm.qn.rt.... (p;q;r,.. là thừa số nguyên tố)

Vì u, v nguyên tố cùng nhau nên a;b;c ;p;q;r,... khác nhau 

=> u.v =( ax.by.cz....). (pm.qn.rt....) =  ax.by.czpm.qn.rt....

Do u.v là số chính phương mà; a;b;c;p;q;r,... khác nhau nên x;y;x;m;n;t,.. là số chẵn

=> u; v là số chính phương

Nguyễn Minh Phụng
22 tháng 2 2019 lúc 19:49

Câu trả lời rất hay

dương lý khánh hạ
Xem chi tiết
Kem Su
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
Xem chi tiết

https://diendantoanhoc.net/topic/104068-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-b2-4ac-kh%C3%B4ng-ph%E1%BA%A3i-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Xem ở link này (mình gửi cho)

Học tốt!!!!!!!!

Lê Trung Hiếu
Xem chi tiết
luu thanh huyen
Xem chi tiết
Shiba Inu
20 tháng 10 2017 lúc 21:03

Cậu giỏi hãy suy nghĩ

Ngô Thu Hiền
Xem chi tiết
Akai Haruma
30 tháng 6 2019 lúc 14:10

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

Akai Haruma
30 tháng 6 2019 lúc 14:19

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

Lê Thị Hải Anh
Xem chi tiết
Incursion_03
10 tháng 12 2018 lúc 0:05

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................

fadfadfad
Xem chi tiết