xác định số tự nhiên n để \(a_n=n^4+2n^3+2n^2+n+7\) là số chính phương
xác định số tự nhiên n để a\(_n\)=n^4+2n^3+2n^2+n+7 là số chính phương
Tìm số tự nhiên n để biểu thức là số chính phương:
n4 + 2n3 + 2n2 + 2n + 7
Tổng sau là số chính phương ko ?
a)C=1+3+5+7+...+(2n-1)với n là số tự nhiên
b)D=2+4+6+8+...+2n với n là số tự nhiên
tim số tự nhiên n để:
\(n^6+2n^4-2n^3+4\) là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
Tìm các số tự nhiên n để A = n^6 - 2n^5 + 2n^4 - 2n^3 + n^2 là số chính phương.
Các bạn ơi giúp mik với
`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)`
Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.
`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`
`<=> (n^2+1)(n-1)^2 = a^2`.
Vì `(n-1)^2` chính phương, `a^2` chính phương.
`=> n^2+1` chính phương.
Đặt `n^2+1 = b^2(b in NN)`.
`=> (b-n)(b+n) =1`
Mà `b, n in NN`.
`=> {(b-n=1), (b+n=1):}`
`<=> {(b=1), (n=0):}`
Vậy `n = 0`.
Hãy tìm số tự nhiên n sao cho A = n^4 - 2n^3 + 3n^2 - 2n là số chính phương